Properties of Wood Impregnated with Waterborne Hyperbranched Polyacrylate Dispersed Organo-Montmorillonite Crosslinked by Polyethene Glycol
- Vol. 35, Issue 3, Pages: 45-51(2021)
DOI: 10.12326/j.2096-9694.2020105
扫 描 看 全 文
1.Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
扫 描 看 全 文
刘如,徐建峰,龙玲.聚乙二醇交联水性超支化聚丙烯酸酯分散有机蒙脱土浸渍处理木材的性能[J].木材科学与技术,2021,35(03):45-51.
LIU Ru,XU Jian-feng,LONG Ling.Properties of Wood Impregnated with Waterborne Hyperbranched Polyacrylate Dispersed Organo-Montmorillonite Crosslinked by Polyethene Glycol[J].Chinese Journal of Wood Science and Technology,2021,35(03):45-51.
采用低分子量聚乙二醇200(PEG-200)与实验室合成的水性超支化聚丙烯酸酯(HBPA)分散有机蒙脱土(OMMT)乳液作为木材浸渍处理改性剂,对青杨(,Populus cathayana, Rehd.)边材进行浸渍处理,并对改性剂及其改性处理材进行化学结构分析以及形貌表征,分析改性剂对处理材的作用机理以及改性剂在处理材内的形态,并测试处理材的物理力学性能指标。结果表明:PEG-200与HBPA具有较好的相容性,OMMT在其中呈部分剥离状态;经过浸渍处理,部分HBPA和OMMT能够进入到木材细胞壁内,PEG能在HBPA和木材之间形成交联作用,但OMMT质量分数在4%时,部分OMMT填充在木材细胞腔内。改性剂处理材的物理力学性能提升,但OMMT质量分数4%相对2%的提升幅度不大。
A laboratory-synthesized waterborne hyperbranched polyacrylate (HBPA) dispersed organo-montmorillonite (OMMT) emulsion with low molecular polyethene glycol 200 (PEG-200) was used as wood impregnating modifier to treat the sapwood of Cathy poplar (,Populus cathayana, Rehd.). The chemical structure and composition of the compound modifiers and the properties of modified wood were characterized. The water absorption, the volume swelling, the compression strength, and the flexural strength of the modified wood were tested. The results showed that the PEG-200 and HBPA were compatible, and the OMMT was exfoliated in the compound. After the impregnating process, some proportion of HBPA and OMMT entered into the wood cell walls, and the PEG-200 acted as a crosslinking agent among them. However, when the OMMT content was 4%, some OMMT filling was found in the wood cell lumen. Significant improvements on physical and mechanical properties of the modified wood were obtained, while the groups contained OMMT showed further improvements. There was no obvious improvement between the wood modified with a 2% OMMT content and the wood modified with a 4% OMMT content.
青杨有机蒙脱土聚乙二醇超支化聚丙烯酸酯化学改性
Cathy poplar (Populus cathayana Rehd.)organo-montmorillonitepolyethene glycolhyperbranched polyacrylatechemical modification
沈晓双, 邹献武, 李改云. 糠醇树脂木材改性技术研究进展[J]. 木材工业, 2017, 31(3): 27-30.
SHEN X S, ZOU X W, LI G Y. Review of wood modification technology with furfuryl alcohol resin[J]. China Wood Industry, 2017, 31(3): 27-30.
Cabane E, Keplinger T, Merk V, et al. Renewable and functional wood materials by grafting polymerization within cell walls[J]. ChemSusChem, 2014, 7(4): 1020-1025.
Ermeydan M A, Cabane E, Hass P, et al. Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(ε-caprolactone) grafting into the cell walls[J]. Green Chemistry, 2014, 16(6): 3313-3321.
赵广杰. 木材中的纳米尺度、纳米木材及木材-无机纳米复合材料[J]. 北京林业大学学报, 2002, 24(Z1): 208-211.
ZHAO G J. Nano-dimensions in wood, nano-wood, wood and inorganic nano-composites[J]. Journal of Beijing Forestry University, 2002, 24(Z1): 208-211.
Wang W, Zhu Y, Cao J Z. Morphological, thermal and dynamic mechanical properties of Cathay poplar/organoclay composites prepared by in situ process[J]. Materials & Design, 2014, 59: 233-240.
LIU R, CHEN Y, CAO J Z. Effects of modifier type on properties of in situ organo-montmorillonite modified wood flour/poly(lactic acid) composites[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 161-168.
陈玉, 曹金珍. 蒙脱土稳定石蜡基Pickering乳液处理材的性能研究[J]. 林业工程学报, 2017, 2(5): 36-40.
CHEN Y, CAO J Z. Effect of dicumyl peroxide(DCP) on properties of paraffin wax based Pickering emulsion stabilized by montmorillonite[J]. Journal of Forestry Engineering, 2017, 2(5): 36-40.
Cai X L, Riedl B, Zhang S Y, et al. Formation and properties of nanocomposites made up from solid aspen wood, melamine-urea-formaldehyde, and clay[J]. Holzforschung, 2007, 61(2): 148-154.
吕文华. 木材/蒙脱土纳米插层复合材料的制备[D]. 北京: 北京林业大学, 2004.
Ganjaee Sari M, Ramezanzadeh B, Pakdel A S, et al. A physico-mechanical investigation of a novel hyperbranched polymer-modified clay/epoxy nanocomposite coating[J]. Progress in Organic Coatings, 2016, 99: 263-273.
Meyers K P, Decker J J, Olson B G, et al. Probing the confining effect of clay particles on an amorphous intercalated dendritic polyester[J]. Polymer, 2017, 112: 76-86.
WEI X F, YANG S Y, WANG J C. Hyperbranched polyester-modified montmorillonite: A novel phase change material for energy storage[J]. Polymer International, 2017, 66(9): 1284-1294.
LI X Y, XU J F, LONG L, et al. Wood composites modified with waterborne hyperbranched polyacrylate dispersed organo-montmorillonite emulsion and the permeability investigations by surface characterizations[J]. Polymer Composites, 2020, 41(9): 3798-3806.
Kuang X, Kuang R, Zheng X D, et al. Mechanical properties and size stability of wheat straw and recycled LDPE composites coupled by waterborne coupling agents[J]. Carbohydrate Polymers, 2010, 80(3): 927-933.
LIU R, CHEN Y, CAO J Z. Characterization and properties of organo-montmorillonite modified lignocellulosic fibers and their interaction mechanisms[J]. RSC Advances, 2015, 5(94): 76708-76717.
刘平, 黄展淑, 谢志明, 等. 聚丙烯酸与聚乙二醇在浓溶液中的复合作用[J]. 高分子材料科学与工程, 1995, 11(5): 79-82.
LIU P, HUAG Z S, XIE Z M. Complexation of poly(acrylic acid) and polyethylene golycol in concentrated solution[J]. Polymer Materials Science & Engineering, 1995, 11(5): 79-82.
Ohkoshi M. FTIR-PAS study of light-induced changes in the surface of acetylated or polyethylene glycol-impregnated wood[J]. Journal of Wood Science, 2002, 48(5): 394-401.
LIU M, YI Q R, LI J Y, et al. Synergistic effect of montmorillonite/lignin on improvement of water resistance and dimensional stability of Populus cathayana[J]. Industrial Crops and Products, 2019, 141: 111747.
Utracki L A, Sepehr M, Boccaleri E. Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs)[J]. Polymers for Advanced Technologies, 2007, 18(1): 1-37.
相关作者
相关机构