基于计算机视觉的定向刨花板内部三维结构信息挖掘方法构建与应用
Construction and Application of Three-Dimensional Structural Data Mining Method for OSB Based on Computer Vision
- 2025年39卷第3期 页码:49-57
DOI: 10.12326/j.2096-9694.2025026
移动端阅览
浏览全部资源
扫码关注微信
南京林业大学材料科学与工程学院,江苏南京 210037
收稿日期:2025-03-21,
修回日期:2025-05-14,
录用日期:2025-05-28,
纸质出版日期:2025-05-30
移动端阅览
定向刨花板(oriented strand board,OSB)是一种以长片大刨花为主要原材料的木质结构人造板,其物理力学性能与内部结构密切相关。为了深入解析OSB构效关系,研究提出一种基于计算机视觉重构OSB内部三维结构的方法。选用旋切单板裁切刨花制备1.2 cm厚OSB,拍摄记录铺装过程,利用计算机视觉技术捕捉刨花铺装的位置,并对铺装后层叠刨花进行单片刨花轮廓提取,再结合断面密度梯度(vertical density profile,VDP)数据计算板坯厚度方向的压缩率,使用Python软件重构OSB内部三维结构。制备5 cm×5 cm(长×宽)的试件并记录质量,检测VDP、内部三维结构和孔隙率。结果表明,制备OSB用刨花总数为2 299片,计算机正确识别所有刨花,其中2 232片刨花完整分割(占比97.1%)。试件实测预测质量、孔隙率、VDP的决定系数
R
2
分别为0.976、0.951、0.812。对比X射线断层扫描(X-ray CT)结果和计算机视觉重构结果发现,三维可视化结构一致性好。基于重构结果,可进一步量化所有刨花的定向角度、面积和施胶效果。计算机视觉方法能够准确可视化和量化OSB试件内部三维结构,为OSB构效关系研究提供可靠基础数据。
Oriented strand board (OSB) is a wood-based structural panel
which is primarily composed of long strands. The physical and mechanical properties are closely related to its internal structure. Since the internal structure of OSB is formed through directional alignment and random layered overlapping of strands
precise characterization of the internal structure is crucial for understanding its structure-property relationships. This study proposes a computer vision-based method for constructing the three-dimensional internal structure of
OSB. Strands were prepared by cutting peeled veneer sheets
and 1.2 cm thick OSB panels were fabricated. The mat-forming process was continuously recorded using imaging technology. Computer vision-based techniques were employed to capture strand positions after forming
followed by individual strand contour extraction. Combined with vertical density profile (VDP) data for calculating thickness-direction compression ratios
Python software was utilized to reconstruct the 3D internal structure of OSB. Specimens (5 cm × 5 cm) were prepared to measure weight
VDP
3D structure
and porosity. Results showed that the total number of strands in fabricated OSB was 2 299
with all strands correctly identified and 2 232 strands (97.1%) completely segmented through computer processing. Determination coefficient (
R
2
) between measured and predicted values reached 0.976 for weight
0.951 for porosity
and 0.812 for VDP respectively. Comparative analysis with X-ray computed tomography (CT) showed excellent consistency in 3D visualization. Vision-based construction enables quantitative analysis of orientation angles
surface areas
and resin distribution for all strands. This computer vision approach provides exact visualization and quantification of OSB's internal 3D structure
establishing reliable fundamental data for investigating structure-property relationships in OSB.
BARNES D . A model of the effect of strand length and strand thickness on the strength properties of oriented wood composites [J ] . Forest Products Journal , 2001 , 51 ( 2 ): 36 - 45 .
胡尧琼 , 李万兆 , 张晔 , 等 . 刨花形态和跌落高度对刨花定向效果的影响 [J ] . 林业工程学报 , 2023 , 8 ( 4 ): 66 - 71 .
HU Y Q , LI W Z , ZHANG Y , et al . Effect of strand shape and drop height on strands orientation [J ] . Journal of Forestry Engineering , 2023 , 8 ( 4 ): 66 - 71 .
李宏艺 , 李长贵 , 马玉珍 , 等 . 大片刨花形态对可饰面定向刨花板力学性能的影响 [J ] . 西北农林科技大学学报(自然科学版) , 2023 , 51 ( 12 ): 39 - 48 .
LI H Y , LI C G , MA Y Z , et al . Influence of large strands shape on mechanical properties of decorative OSB [J ] . Journal of Northwest A & F University (Natural Science Edition) , 2023 , 51 ( 12 ): 39 - 48 .
尤立行 , 杨培 , 周晓燕 . 等离子体改性对施胶效果及定向刨花板性能的影响 [J ] . 林业工程学报 , 2024 , 9 ( 6 ): 68 - 77 .
YOU L X , YANG P , ZHOU X Y . Effect of plasma modification on resin efficiency and properties of OSB [J ] . Journal of Forestry Engineering , 2024 , 9 ( 6 ): 68 - 77 .
李东虎 , 李万兆 , 梅长彤 . 定向刨花板抗弯性能、形变及剖面密度梯度的相关性 [J ] . 林业工程学报 , 2023 , 8 ( 3 ): 52 - 57 .
LI D H , LI W Z , MEI C T . The relationship of bending strength, deformation and VDP of OSB [J ] . Journal of Forestry Engineering , 2023 , 8 ( 3 ): 52 - 57 .
VAN HOUTS J H , WINISTORFER P M , WANG S Q . Analysis of OSB mat structure made from industrially manufactured strands using simulation modeling [J ] . Wood and Fiber Science , 2003 , 35 ( 3 ): 351 - 362 .
MALEKMOHAMMADI S , ZOBEIRY N , GEREKE T , et al . A comprehensive multi-scale analytical modeling framework for predicting the mechanical properties of strand-based composites [J ] . Wood Science and Technology , 2015 , 49 ( 1 ): 59 - 81 .
BIZIKS V , VAN ACKER J , MILITZ H , et al . Density and density profile changes in birch and spruce caused by thermo-hydro treatment measured by X-ray computed tomography [J ] . Wood Science and Technology , 2019 , 53 ( 2 ): 491 - 504 .
LI W Z , LI D H , DUAN Y J , et al . Combining X-ray CT and DIC to understand the bending strength of OSB [J ] . Construction and Building Materials , 2022 , 354 : 129125 .
STEINER P R , DAI C P . Spatial structure of wood composites in relation to processing and performance characteristics [J ] . Wood Science and Technology , 1993 , 28 ( 1 ): 45 - 51 .
萧嘉奕 , 马艳 , 周竹 , 等 . 基于Faster R-CNN模型的木材表面节子缺陷检测 [J ] . 木材工业 , 2020 , 34 ( 2 ): 45 - 48 .
XIAO J Y , MA Y , ZHOU Z , et al . Detection of timber surface knots based on faster R-CNN [J ] . China Wood Industry , 2020 , 34 ( 2 ): 45 - 48 .
范若菲 , 李时东 , 李时元 . 基于改进YOLOv5的日本落叶松虫害检测技术 [J ] . 林业工程学报 , 2023 , 8 ( 3 ): 165 - 172 .
FAN R F , LI S D , LI S Y . Japanese larch insect pest recognition method based on the improved YOLOv5 model [J ] . Journal of Forestry Engineering , 2023 , 8 ( 3 ): 165 - 172 .
YANG S Y , KWON O , PARK Y . Application of neural networks for classifying softwood species using near infrared spectroscopy [J ] . Journal of Near Infrared Spectroscopy , 2020 , 28 ( 5-6 ): 298 - 307 .
席靖宇 , 王宇轩 , 衡利辰 , 等 . 基于计算机视觉的针叶材木射线特征提取方法 [J ] . 林业工程学报 , 2023 , 8 ( 3 ): 132 - 140 .
XI J Y , WANG Y X , HENG L C , et al . Wood ray feature extraction method of softwood based on computer vision [J ] . Journal of Forestry Engineering , 2023 , 8 ( 3 ): 132 - 140 .
洪吾俊 , 李万兆 , 胡尧琼 , 等 . 基于卷积神经网络的刨花定向角度自动测量方法构建 [J ] . 木材科学与技术 , 2024 , 38 ( 1 ): 58 - 65 .
HONG W J , LI W Z , HU Y Q , et al . An automatic method for measuring strands' orientation angles based on convolutional neural network [J ] . Chinese Journal of Wood Science and Technology , 2024 , 38 ( 1 ): 58 - 65 .
HONG W J , SHI Y F , HUO Z W , et al . Real-time tracking of the characteristics of strands in OSB production lines [J ] . Wood Science and Technology , 2024 , 59 ( 1 ): 16 .
KIRILLOV A , MINTUN E , RAVI N , et al . Segment anything [C ] // 2023 IEEE/CVF International Conference on Computer Vision (ICCV) . Paris, France . IEEE , 2023 : 3992 - 4003 .
DOUGLAS D H , PEUCKER T K . algorithms for the reduction of the number of points required to represent a digitized line or its caricature [J ] . Cartographica: The International Journal for Geographic Information and Geovisualization , 1973 , 10 ( 2 ): 112 - 122 .
LI W Z , SHI Y F , HONG W J , et al . In situ structural changes of voids in OSB in three-point bending test [J ] . European Journal of Wood and Wood Products , 2025 , 83 ( 1 ): 43 .
胡尧琼 . 刨花定向效果和板坯结构对OSB性能影响的研究 [D ] . 南京 : 南京林业大学 , 2024 .
周继鹏 , 李万兆 , 洪吾俊 , 等 . 基于计算机视觉在线监测定向刨花板断面密度梯度(VDP) [J ] . 北京林业大学学报 , 2024 , 46 ( 12 ): 151 - 157 .
ZHOU J P , LI W Z , HONG W J , et al . Monitoring vertical density profile(VDP) of oriented strand board by computer vision [J ] . Journal of Beijing Forestry University , 2024 , 46 ( 12 ): 151 - 157 .
相关作者
相关机构
微信公众号