TEMPO氧化处理调控轻木细胞壁纳米结构
Regulating Balsa Wood Cell Wall Nanostructure via TEMPO Oxidation
- 2024年38卷第6期 页码:1-7
DOI: 10.12326/j.2096-9694.2024121
移动端阅览
浏览全部资源
扫码关注微信
中国林业科学研究院木材工业研究所,北京 100091
纸质出版日期: 2024-11-30 ,
移动端阅览
吴明月, 戴鑫建, 王鑫, 等. TEMPO氧化处理调控轻木细胞壁纳米结构[J]. 木材科学与技术, 2024,38(6):1-7.
WU MINGYUE, DAI XINJIAN, WANG XIN, et al. Regulating Balsa Wood Cell Wall Nanostructure via TEMPO Oxidation. [J]. Chinese journal of wood science and technology, 2024, 38(6): 1-7.
针对天然木材细胞壁中纳米孔隙有限及比表面积低的问题,采用2,2,6,6-四甲基哌啶-1-氧自由基(2,2,6,6-tetramethylpiperidinyl-1-oxyl radical,TEMPO)介导氧化法原位疏解轻木(
Ochroma pyramidale
)细胞壁微纤丝束,并结合超临界干燥制备TEMPO氧化木材,以调控木材细胞壁纳米结构并提升其比表面积。采用扫描电镜(SEM)、傅里叶变换红外光谱仪(FTIR)及能量色散能谱仪(EDS)对材料的微观形貌和化学组成进行表征,并结合比表面积及孔隙度分析仪,探究氧化处理对木材细胞壁孔隙结构的影响。结果表明:TEMPO氧化处理保留了木材的蜂窝状细胞结构,并实现了木材细胞壁微纤丝束的原位疏解,使其展现高度纤丝化的纳米网络结构,纤丝直径分布在20~40 nm之间;TEMPO氧化处理木材细胞壁具有丰富的介孔结构,其比表面积高达96.92 m
2
/g,相比天然木材提升约72倍。研究为木材细胞壁纳米结构调控以及木基多孔材料开发提供新思路。
The lack of nanopores and low specific surface area of natural wood limit its functional applications in many fields. In this study
2
2
6
6-tetramethylpiperidinyl-1-oxyl radical (TEMPO)-mediated oxidation was applied to generate nanopores in wood and increase its specific surface area by in-situ fibrillation of cellulose microfibril bundles within the cell walls of balsa wood (
Ochroma pyramidale
). The microstructure and chemical composition of the TEMPO-oxidized wood were characterized using scanning electron microscopy (SEM)
Fourier transform infrared spectroscopy (FTIR)
and energy dispersive spectroscopy (EDS). Moreover
the effect of TEMPO-oxidation treatment on the pore structure of wood cell wall was investigated using a specific surface area and pore size analyzer. The results showed that the honeycomb-like cellular structure of the wood was well preserved after oxidation treatment
while the microfibrils in the wood cell wall were successfully individualized
resulting in a highly nanofibrillated network structure with microfibril diameters ranging from 20 to 40 nm. The TEMPO-oxidized wood exhibited a highly mesoporous structure w
ith a high specific surface area of 96.92 m²/g
which is about 72 times higher than that of natural wood. This study provides a novel approach to regulating the nanostructure of wood cell walls for developing porous wood-based materials.
轻木细胞壁纳米结构细胞壁孔隙TEMPO氧化纤维素微纤丝
balsa woodcell wall nanostructurepore structureTEMPO oxidationcellulose microfibrils
王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10): 123-133.
WANG Z, WANG X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123-133.
卢芸. 木材超分子科学: 科学意义及展望[J]. 木材科学与技术, 2022, 36(2): 1-10.
LU Y. Wood supramolecular science: scientific significance and prospects[J]. Chinese Journal of Wood Science and Technology, 2022, 36(2): 1-10.
GUAN H, CHENG Z Y, WANG X Q. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano, 2018, 12(10): 10365-10373.
管浩, 戴鑫建, 王鑫, 等. 木基多孔油水分离材料研究进展[J]. 木材科学与技术, 2022, 36(1): 1-8.
GUAN H, DAI X J, WANG X, et al. Research review of wood-based porous materials for oil/water separation[J]. Chinese Journal of Wood Science and Technology, 2022, 36(1): 1-8.
GAREMARK J, PEREA-BUCETA J E, RICO DEL CERRO D, et al. Nanostructurally controllable strong wood aerogel toward efficient thermal insulation[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24697-24707.
LI T, SONG J W, ZHAO X P, et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose[J]. Science Advances, 2018, 4(3): eaar3724.
HUANG J L, ZHAO B T, LIU T, et al. Wood-derived materials for advanced electrochemical energy storage devices[J]. Advanced Functional Materials, 2019, 29(31): 1902255.
WU T, LU Y, TAO X L, et al. Superelastic wood-based nanogenerators magnifying the piezoelectric effect for sustainable energy conversion[J]. Carbon Energy, 2024, 6(11): e561.
TU K K, BÜCHELE S, MITCHELL S, et al. Natural wood-based catalytic membrane microreactors for continuous hydrogen generation[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 8417-8426.
卢芸, 王凯, 付宗营, 等. 木材孔隙结构的调控与利用研究进展[J]. 木材科学与技术, 2023, 37(6): 1-11.
LU Y, WANG K, FU Z Y, et al. Research progress on the regulation and utilization of wood pore structure[J]. Chinese Journal of Wood Science and Technology, 2023, 37(6): 1-11.
LI J G, CHEN C J, ZHU J Y, et al. In situ wood delignification toward sustainable applications[J]. Accounts of Materials Research, 2021, 2(8): 606-620.
FU Q L, MEDINA L, LI Y Y, et al. Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36154-36163.
王晓雯. 棉织物羧基化改性及其对重金属离子吸附性能研究[D]. 上海: 东华大学, 2022.
SAITO T, NISHIYAMA Y, PUTAUX J L, et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose[J]. Biomacromolecules, 2006, 7(6): 1687-1691.
TANAKA R, SAITO T, ISOGAI A. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8[J]. International Journal of Biological Macromolecules, 2012, 51(3): 228-234.
JUNGNIKL K, PARIS O, FRATZL P, et al. The implication of chemical extraction treatments on the cell wall nanostructure of softwood[J]. Cellulose, 2008, 15(3): 407-418.
ZHENG D Y, LI Z H, YAO W R, et al. A maleic anhydride-mediated green and sustainable route for versatile wood platform[J]. Chemical Engineering Journal, 2024, 479: 147907.
ZHOU L Y, GUO W Y, ZHANG L R, et al. A top-down strategy for the preparation of flame retardant, robust, and transparent wood-derived films[J]. Journal of Materials Research and Technology, 2022, 21: 3594-3603.
SONG J N, JIN X, WANG X C, et al. Preferential binding properties of carboxyl and hydroxyl groups with aluminium salts for humic acid removal[J]. Chemosphere, 2019, 234: 478-487.
SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
相关作者
相关机构
微信公众号