基于改进YOLOv10s的木材表面缺陷检测模型
Wood Surface Defect Detection Model Based on Improved YOLOv10s
- 2025年39卷第2期 页码:57-66
DOI: 10.12326/j.2096-9694.2024074
移动端阅览
浏览全部资源
扫码关注微信
1.江西省赣州市南康区城发家具产业智能制造有限公司,江西赣州 341400
2.江西冠英智能科技股份有限公司,江西赣州 341000
收稿日期:2024-10-17,
修回日期:2025-01-02,
纸质出版日期:2025-03-30
移动端阅览
针对木材表面缺陷复杂多样的问题及其检测任务的实时性需求,提升YOLOv10s模型性能,通过修改Backbone中卷积模块简化模型结构,同时引入轻量级动态上采样模块提高多尺度特征融合过程的采样精度,并采用多尺度注意力模块来兼顾大目标和小目标的检测。构建木材表面缺陷检测数据集对模型开展训练和验证试验,改进算法精度(mAP@0.5)达95.1%,推理时间为3.8 ms/帧。试验结果表明,改进模型在检测精度上优于同类算法,检测速度满足实时性需求,适应木材表面缺陷检测任务。
In response to the complex and diverse nature of wood surface defects and the real-time requirements of the detection tasks
this study aimed to improve the performance of the YOLOv10s model for wood surface defect detection. The proposed method simplifies the model structure by modifying the convolution modules in the Backbone
while introducing a lightweight dynamic upsampling module to enhance the sampling accuracy in the multi-scale feature fusion process. Additionally
a multi-scale attention module is incorporated to balance the detection of both large and small targets. Furthermore
a wood surface defect detection dataset was constructed to train and validate the model. Experimental results show that the proposed improved algorithm achieves an mAP@0.5 (mAP@0.5 refers to the mean Average Precision at 50% intersection over union) of 95.1% and an inference time of 3.8 ms/frame. The results indicate that the improved model outperforms the current existing algorithms in detection accuracy
while it also meets the real-time detection requirements
making it suitable for wood surface defect detection tasks.
肖雨晴 , 杨慧敏 , 王柯欣 , 等 . 卷积神经网络在木材缺陷检测应用中的研究进展 [J ] . 木材科学与技术 , 2021 , 35 ( 3 ): 12 - 18 .
XIAO Y Q , YANG H M , WANG K X , et al . Research progress of convolutional neural network in wood defect detection [J ] . Chinese Journal of Wood Science and Technology , 2021 , 35 ( 3 ): 12 - 18 .
张甜 , 程小武 , 陆伟东 , 等 . 超声波法检测木材内部孔洞缺陷的研究 [J ] . 西南林业大学学报 , 2016 , 36 ( 1 ): 121 - 125, 130 .
ZHANG T , CHENG X W , LU W D , et al . Experimental study on testing internal hole defects of wood by ultrasonic method [J ] . Journal of Southwest Forestry University , 2016 , 36 ( 1 ): 121 - 125, 130 .
PAHLBERG T , HAGMAN O , THURLEY M . Recognition of boards using wood fingerprints based on a fusion of feature detection methods [J ] . Computers and Electronics in Agriculture , 2015 , 111 : 164 - 173 .
王泽润 . 基于颜色与纹理特征的木材表面缺陷识别方法 [D ] . 杭州 : 浙江农林大学 , 2018 .
ZHANG Y Z , LIU S J , TU W J , et al . Using computer vision and compressed sensing for wood plate surface detection [J ] . Optical Engineering , 2015 , 54 ( 10 ): 103102 .
陈立君 . 基于流形支持向量机的木材表面缺陷识别方法的研究 [D ] . 哈尔滨 : 东北林业大学 , 2015 .
URBONAS A , RAUDONIS V , MASKELIŪNAS R , et al . Automated identification of wood veneer surface defects using faster region-based convolutional neural network with data augmentation and transfer learning [J ] . Applied Sciences , 2019 , 9 ( 22 ): 4898 .
TU Y X , LING Z G , GUO S Y , et al . An accurate and real-time surface defects detection method for sawn lumber [J ] . IEEE Transactions on Instrumentation and Measurement , 2021 , 70 : 1 - 11 .
朱豪 , 周顺勇 , 曾雅兰 , 等 . 基于改进YOLOv5s的木材表面缺陷检测模型 [J ] . 木材科学与技术 , 2023 , 37 ( 2 ): 8 - 15 .
ZHU H , ZHOU S Y , ZENG Y L , et al . Detection model of wood surface defects based on improved YOLOv5s [J ] . Chinese Journal of Wood Science and Technology , 2023 , 37 ( 2 ): 8 - 15 .
王正 , 江莺 , 严飞 , 等 . 基于YOLOv7的木材缺陷检测模型Wood-Net的研究 [J ] . 林业工程学报 , 2024 , 9 ( 1 ): 132 - 140 .
WANG Z , JIANG Y , YAN F , et al . Research on wood defect detection model Wood-Net based on YOLOv7 [J ] . Journal of Forestry Engineering , 2024 , 9 ( 1 ): 132 - 140 .
ZHOU S , ZHU H , LIU X , et al . Wood surface defect detection based on improved YOLOv8s [J ] . IAENG International Journal of Computer Science , 2024 , 51 ( 3 ).
AN H , LIANG Z H , QIN M M , et al . Wood defect detection based on the CWB-YOLOv8 algorithm [J ] . Journal of Wood Science , 2024 , 70 ( 1 ): 26 .
WANG A , CHEN H , LIU L H , et al . YOLOv10: real-time end-to-end object detection [EB/OL ] . arXiv preprint arXiv . https://arxiv.org/abs/2405.14458v2 https://arxiv.org/abs/2405.14458v2 .
DING X H , ZHANG Y Y , GE Y X , et al . UniRepLKNet: a universal perception large-kernel ConvNet for audio, video, point cloud, time-series and image recognition [C ] // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Seattle, WA , USA . IEEE , 2024 : 5513 - 5524 .
LIU W Z , LU H , FU H T , et al . Learning to upsample by learning to sample [C ] // Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) . Paris, France . 2023 : 6027 - 6037 .
HE K M , GKIOXARI G , DOLLAR P , et al . Mask R-CNN [C ] // Proceedings of the IEEE International Conference on Computer Vision . Venice . IEEE , 2017 : 2961 - 2969 .
SHI W , CABALLERO J , HUSZÁR F , et al . Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C ] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . 2016 : 1874 - 1883 .
OUYANG D L , HE S , ZHANG G Z , et al . Efficient multi-scale attention module with cross-spatial learning [C ] // ICASSP 2023 -2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . Rhodes Island, Greece . IEEE , 2023 : 1 - 5 .
相关作者
相关机构
微信公众号