毛白杨制备LNG船用特种重组材料的适应性初步研究
Preliminary Study on the Adaptability of Special Wood Scrimber Materials for LNG Ships Prepared from
Populus tomentosa - 2024年38卷第6期 页码:62-68
DOI: 10.12326/j.2096-9694.2024053
移动端阅览
浏览全部资源
扫码关注微信
1.中国林业科学研究院木材工业研究所,北京 100091
2.康利源科技(天津)股份有限公司,天津 300400
3.山东省单县农业农村局,山东菏泽 274300
4.上海外高桥造船海洋工程有限公司,上海 200137
纸质出版日期: 2024-11-30 ,
移动端阅览
张方达, 孙忠海, 杨素英, 等. 毛白杨制备LNG船用特种重组材料的适应性初步研究[J]. 木材科学与技术, 2024,38(6):62-68.
ZHANG FANGDA, SUN ZHONGHAI, YANG SUYING, et al. Preliminary Study on the Adaptability of Special Wood Scrimber Materials for LNG Ships Prepared from
液化天然气(liquefied natural gas,LNG)船用特种重组材料常用于超低温储气罐与船体之间,作为承重和隔热材料,目前该材料主要从国外进口。采用厚度为1.3 mm和1.8 mm的毛白杨单板为原料制备LNG船用特种重组木,并对比其微观构造、吸水率和力学强度。结果表明,1.3 mm厚毛白杨单板制备重组木的综合性能较好,吸水率为6.6%,垂直加载抗弯性能分别为212.4 MPa和17.5 GPa,抗压强度为255.6 MPa,剪切强度为38.2 MPa,但其吸水率和剪切强度均与相关进口产品有较大差距;另外,力学强度测试过程中发现2种厚度单板制备的重组木局部被压溃,并产生裂纹。
The special scrimber for liquefied natural gas (LNG) ships is used as a load-bearing and insulation material between the cryogenic gas storage tankers and the ship hull. Currently
this material is mainly imported from abroad. In this study
Populus tomentosa
veneers with thicknesses of 1.3 mm and 1.8 mm were used to prepare special wood scrimber for LNG ships. The microstructure
water absorption and mechanical strength were evaluated and compared. The results indicated that the performance of the special wood scrimber prepared from 1.3 mm veneers was superior
with a water absorption rate of 6.6%
vertical loading and bending resistance of 212.4 MPa and 17.5 GPa respectively
a compressive strength of 255.6 MPa
and a shear strength of 38.2 MPa. However
the shear strength and water absorption of wood scrimber-1.3 are still lower than those of imported products. Furthermore
during the mechanical strength test
it was found that the wood scrimbers prepared from two types of veneers were both crushed and exhibited some cracks.
毛白杨单板LNG船特种重组木吸水率力学强度孔隙裂纹
Populus tomentosa veneerLNG shipspecial wood scrimberwater absorptionmechanical propertiesporecrack
International Gas Union. 2024 world lng report[R]. London: RystadEnergy, 2024.
顾安忠. 迎向“十二五”中国LNG的新发展[J]. 天然气工业, 2011, 31(6): 1-11.
GU A Z. Outlook of LNG development in the twelfth “Five-Year” plan of China[J]. Natural Gas Industry, 2011, 31(6): 1-11.
黄帆. 我国液化天然气现状及发展前景分析[J]. 天然气技术, 2007(1): 68-71, 92.
HUANG F. Analysis on current situation and prospect of LNG in China[J]. Natural Gas Technology, 2007(1): 68-71.
叶华. 液化气船液罐支承垫木国产化研制[J]. 江南集团技术, 2001(1): 45-47.
郑坤, 杨波. LNG船用殷瓦合金和胶合板国产化的必要性探讨[J]. 资源节约与环保, 2017(11): 111-113.
ZHENG K, YANG B. Discussion on the necessity of localization of invar alloy and plywood for LNG ship[J]. Resources Economization & Environmental Protection, 2017(11): 111-113.
克里斯蒂安·施明,彼得·路德维格,马丁·弗里德里奇·艾希纳,等. 支承块及生产方法[P]. CN114857486A, 2022.08.05.
于文吉. 我国重组材料科学技术发展现状与趋势[J]. 木材科学与技术, 2023, 37(1): 1-7.
YU W J. Current status and future trend of science and technology for reconstituted materials in China[J]. Chinese Journal of Wood Science and Technology, 2023, 37(1): 1-7.
国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 1985.
ZHANG Y H, HUANG Y X, QI Y, et al. Novel engineered scrimber with outstanding dimensional stability from finely fluffed poplar veneers[J]. Measurement, 2018, 124: 318-321.
陈鹤予, 郎倩, 佘颖, 等. 速生材木质部构造对浸渍特性的影响[J]. 安徽农业大学学报, 2012, 39(3): 385-388.
CHEN H Y, LANG Q, SHE Y, et al. Effects of xylem structure on impregnating preerformance[J]. Journal of Anhui Agricultural University, 2012, 39(3): 385-388.
李永峰, 刘一星, 于海鹏, 等. 木材流体渗透理论与研究方法[J]. 林业科学, 2011, 47(2): 134-144.
LI Y F, LIU Y X, YU H P, et al. Theory of fluids penetrating wood and its researching method[J]. Scientia Silvae Sinicae, 2011, 47(2): 134-144.
何盛, 徐军, 吴再兴, 等. 毛竹与樟子松木材孔隙结构的比较[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 157-162.
HE S, XU J, WU Z X, et al. Compare of porous structure of moso bamboo and Pinus sylvestris L. lumber[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(2): 157-162.
孟凡丹, 吴秉岭, 余养伦, 等. 单板厚度对单板层积材性能的影响[J]. 木材工业, 2016, 30(3): 5-8.
MENG F D, WU B L, YU Y L, et al. Effect of thicker veneers on properties of laminated veneer lumber[J]. Chinese Journal of Wood Science and Technology, 2016, 30(3): 5-8.
STOECKEL F, KONNERTH J, GINDL-ALTMUTTER W. Mechanical properties of adhesives for bonding wood-a review[J]. International Journal of Adhesion and Adhesives, 2013, 45: 32-41.
刘庆娟, 王玉镯, 高英, 等. 改性速生杨木抗压性能试验研究[J]. 土木与环境工程学报(中英文), 2019(5): 99-108.
LIU Q J, WANG Y Z, GAO Y, et al. Experimental study on mechanical behavior of modified fast-growing poplar[J]. Journal of Civil and Environmental Engineering, 2019(5): 99-108.
余养伦, 于文吉, 王戈. 桉树单板层积材的制造工艺和主要性能[J]. 林业科学, 2007, 43(8): 154-158.
YU Y L, YU W J, WANG G. Manufacturing technology and main properties for laminated veneer lumber of Eucalyptus[J]. Scientia Silvae Sinicae, 2007, 43(8): 154-158.
程丽婷, 戴俭, 彭乐鑫. 含水率对落叶松木材材性检测指标的影响[J]. 科学技术与工程, 2020, 20(36): 15050-15058.
CHENG L T, DAI J, PENG L X. Effect of moisture content on wood properties deterction index of Larch[J]. Science Technology and Engineering, 2020, 20(36): 15050-15058.
成俊卿. 木材学[M]. 北京: 中国林业出版社, 1985.
刘宝勇, 朱哲仁. LNG船液货舱绝热材料概述[J]. 科技视界, 2012, (8).
相关作者
相关机构
微信公众号