竖向孔洞对木柱受压承载性能的影响研究
Effect of Vertical Holes on Compressive Bearing Capacity of Timber Columns
- 2024年38卷第6期 页码:39-46
DOI: 10.12326/j.2096-9694.2024020
移动端阅览
浏览全部资源
扫码关注微信
中国林业科学研究院木材工业研究所,北京 100091
纸质出版日期: 2024-11-30 ,
移动端阅览
钟慧娴, 陈勇平, 钟永. 竖向孔洞对木柱受压承载性能的影响研究[J]. 木材科学与技术, 2024,38(6):39-46.
ZHONG HUIXIAN, CHEN YONGPING, ZHONG YONG. Effect of Vertical Holes on Compressive Bearing Capacity of Timber Columns. [J]. Chinese journal of wood science and technology, 2024, 38(6): 39-46.
带孔洞木柱受压承载性能是古建筑木结构的研究重点之一。以古建筑常用树种落叶松(
Larix
sp.)木材为试验材料,采用人工开孔方法来模拟木柱内部孔洞缺陷,基于数字散斑图像(digital speckle image correlation,DIC)和力学试验机联用技术,研究竖向孔洞对木柱受压承载性能的影响,结合宏观和微观力学性能来揭示带竖向孔洞缺陷木柱的受压破坏机制。结果表明:在本试验条件下,竖向孔洞横截面面积对木柱极限荷载的影响大于孔洞长度的影响;带竖向孔洞木柱受压破坏模式主要表现为褶皱破坏,随着位移的增加,出现木材横纹撕裂和斜角度剪切破坏;木材纤维褶皱破坏和斜角度剪切破坏主要是木材管胞细胞壁屈曲导致,而木材横纹撕裂破坏主要沿木材管胞顺纹方向延展且断面呈不规则锯齿状;应变场分布图显示表明木柱孔洞端部位置的竖向应力、横纹应力和剪切应力均存在显著应力集中,验证了数字散斑方法预测古建筑木构件损伤位置的有效性。通过竖向孔洞对木柱受压承载性能的影响研究,可为古建筑木结构保护修缮提供参考依据。
The compressive bearing capacity of timber columns with holes is a key research focus in ancient timber structures. In this study
larch wood (
Larix
sp.)
commonly used in ancient buildings
was selected as the experimental material. To investigate the effect of vertical holes on the compressive bearing capacity of timber columns
an artificial opening method was used to simulate internal hole defects. The compressive test was conducted using digital speckle image correlation (DIC) in conjunction with a mechanical testing machine. The compressive failure mechanism in timber columns with vertical holes was examined through the macroscopic and microscopic mechanical properties. The results indicated that
under the conditions of this experiment
the effect of the hole’s cross-sectional area on the ultimate load of timber column was greater than that of the hole’s longitude direction. Fold failure was the primary compressive failure mode for timber columns with vertical holes
followed by the transverse tearing and oblique shear failure of the wood as displacement increased. Fold failure and oblique shear failure were primarily caused by the buckling of the wood tracheid cell walls
while transverse tearing failure primarily extended longitudinally along the wood tracheid cells resulting in an irregularly serrated cross-section. Additionally
the strain field distribution indicated that stress conce
ntrations in the vertical
transverse stress
and shear stress occurred at the ends of holes
which demonstrated the effectiveness of the DIC method in predicting the damage location in ancient building wood components. This study provides a solid foundation for the protection and repair of ancient timber structures.
带孔洞木柱受压承载性能数字散斑图像(DIC)竖向孔洞极限荷载破坏模式应变场
timber column with holescompressive bearing capacitydigital speckle image correlation (DIC)vertical holeultimate loadfailure modestrain field
白丽娟, 王景福. 古建清代木构造[M]. 北京: 中国建材工业出版社, 2007.
张磊. 浅析古建筑木构件与木质文物的保护方法[J]. 知识文库, 2018(4): 3-4.
戴俭, 常丽红, 钱威, 等. 古建筑木构件残损特征及其内部空洞的应力波无损检测[J]. 北京工业大学学报, 2016, 42(2): 236-244.
DAI J, CHANG L H, QIAN W, et al. Damage characteristics of ancient architecture wood members and stress wave nondestructive testing of internal void[J]. Journal of Beijing University of Technology, 2016, 42(2): 236-244.
VERBIST M, BRANCO J M, NUNES L. Characterization of the mechanical performance in compression perpendicular to the grain of insect-deteriorated timber[J]. Buildings, 2020, 10(1): 14.
PARRACHA J L, PEREIRA M F C, MAURÍCIO A, et al. A semi-destructive assessment method to estimate the residual strength of maritime pine structural elements degraded by anobiids[J]. Materials and Structures, 2019, 52(3): 1-11, 54.
WITOMSKI P, OLEK W, BONARSKI J T. Changes in strength of Scots pine wood (Pinus silvestris L.) decayed by brown rot (Coniophora puteana) and white rot (Trametes versicolor)[J]. Construction and Building Materials, 2016, 102: 162-166.
PILT K, TEDER M, SÜDA I, et al. In-situ measurement of microclimatic conditions and modeling of mechanical properties of timber structures–A case study on new church on Ruhnu Island, Estonia[J]. International Biodeterioration & Biodegradation, 2014, 86: 158-164.
PIZZO B, MACCHIONI N, CAPRETTI C, et al. Assessing the wood compressive strength in pile foundations in relation to diagnostic analysis: the example of the Church of Santa Maria Maggiore, Venice[J]. Construction and Building Materials, 2016, 114: 470-480.
马艳如, 肖泽芳, 谢延军, 等. 山西白台寺古榆木檐柱的劣化机制[J]. 东北林业大学学报, 2019, 47(12): 112-118.
MA Y R, XIAO Z F, XIE Y J, et al. Deterioration of the ancient Ulmus wood served as eaves column replaced from baitai temple in Shanxi prov-ince[J]. Journal of Northeast Forestry University, 2019, 47(12): 112-118.
谢启芳, 张保壮, 李胜英, 等. 残损木柱受力性能退化试验研究与有限元分析[J]. 建筑结构学报, 2021, 42(8): 117-125.
XIE Q F, ZHANG B Z, LI S Y, et al. Experimental study and finite element analysis on degradation of mechanical properties of damaged timber columns[J]. Journal of Building Structures, 2021, 42(8): 117-125.
SONG X B, WU Y J, JIANG R. Compressive capacity of longitudinally cracked wood columns retrofitted by self-tapping screws[J]. Journal of Zhejiang University: Science A, 2015, 16(12): 964-975.
ZHANG W P, SONG X B, GU X L, et al. Compressive behavior of longitudinally cracked timber columns retrofitted using FRP sheets[J]. Journal of Structural Engineering, 2012, 138(1): 90-98.
LI S Y, XIE Q F, ZHANG B Z, et al. Compressive behavior of damaged timber columns: experimental tests, degradation model, and repair method[J]. Engineering Structures, 2023, 293: 116579.
孙艳玲, 赵东, 高继河. 数字散斑相关方法在木材断裂力学上的应用分析[J]. 北京林业大学学报, 2009, 31(S1): 206-209.
SUN Y L, ZHAO D, GAO J H. Application of digital speckle correlation method in wood fracture mechanics[J]. Journal of Beijing Forestry University, 2009, 31(S1): 206-209.
Mishnaevsky L J, Brøndsted P. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: a review[J]. Computational Materials Science, 2009, 44(4): 1351-1359.
任宁. 木材微观构造对受载断裂的影响方式研究[D]. 哈尔滨: 东北林业大学, 2007.
BILKO P, SKORATKO A, RUTKIEWICZ A, et al. Determination of the shear modulus of pine wood with the arcan test and digital image correlation[J]. Materials, 2021, 14(2): 468.
刘焕荣. 竹材的断裂特性及断裂机理研究[D]. 北京: 中国林业科学研究院, 2010.
GB/T 28993—2012, 结构用锯材力学性能测试方法[S].
范钦珊. 材料力学[M]. 北京: 清华大学出版社, 2004.
KIA L, VALIPOUR H R. Composite timber-steel encased columns subjected to concentric loading[J]. Engineering Structures, 2021, 232: 111825.
施毕新. 残损木柱力学性能退化机理及复合加固方法研究[D]. 绵阳: 西南科技大学, 2023.
孟宪杰. 古建筑保护中的木材受压性能试验研究[D]. 太原: 太原理工大学, 2016.
YOSHIHARA H, ATAKA N, MARUTA M. Analysis of the open-hole compressive strength of spruce[J]. Holzforschung, 2016, 70(5): 449-455.
相关作者
相关机构
微信公众号