木材超分子科学:科学意义及展望
Wood Supramolecular Science:Scientific Significance and Prospects
- 2022年36卷第2期 页码:1-10
DOI: 10.12326/j.2096-9694.2022026
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
扫 描 看 全 文
卢芸.木材超分子科学:科学意义及展望[J].木材科学与技术,2022,36(02):1-10.
LU Yun.Wood Supramolecular Science:Scientific Significance and Prospects[J].Chinese Journal of Wood Science and Technology,2022,36(02):1-10.
简要介绍木材科学与超分子科学的发展,概述超分子科学在木材科学领域的应用现状。在此基础上,首次提出“木材超分子科学”的概念,分别从定义、框架、研究意义、研究内容和产业应用方面对木材超分子科学进行阐述,并对木材超分子科学的发展趋势进行展望。
In this paper, the development of wood and supramolecular science is reviewed. The emerging application of supramolecular disciplines in the field of wood science is summarized. The concept of wood supramolecular science is newly introduced with discussions on the definition, framework, research principles, research contents, and industry applications. Furthermore, the future trend in wood supramolecular science is presented.
木材超分子细胞壁聚集体纤维素非共价键
wood supramolecularcell wallaggregatecellulosenon-covalent bonding
李坚. 木材科学[M]. 3版. 北京: 科学出版社, 2014.
吴义强. 木材科学与技术研究新进展[J]. 中南林业科技大学学报, 2021, 41(1): 1-28.
WU Y Q. Newly advances in wood science and technology[J]. Journal of Central South University of Forestry & Technology, 2021, 41(1): 1-28.
LU Y, LU Y T, JIN C B, et al. Natural wood structure inspires practical lithium–metal batteries[J]. ACS Energy Letters, 2021, 6(6): 2103-2110.
沈家骢. 超分子层状结构:组装与功能[M]. 北京: 科学出版社, 2005.
法)Jean-Marie Lehn. 超分子化学:概念和展望[M]. (沈兴海,译). 北京: 北京大学出版社, 2002.
沈家骢, 孙俊奇. 超分子科学研究进展[J]. 中国科学院院刊, 2004, 19(6): 420-424.
SHEN J C, SUN J Q. Research development of supramolacular science[J]. Bulletin of the Chinese Academy of Sciences, 2004, 19(6): 420-424.
沈家骢, 张文科, 孙俊奇. 超分子材料引论[M]. 北京:科学出版社, 2019.
凌喆, 赖晨欢, 黄曹兴, 等. 预处理纤维素超分子结构变化机制研究进展[J]. 林业工程学报, 2021, 6(4): 24-34.
LING Z, LAI C H, HUANG C X, et al. Research progress in variations of cellulose supramolecular structures via biomass pretreatment[J]. Journal of Forestry Engineering, 2021, 6(4): 24-34.
Rongpipi S, Ye D, Gomez E D, et al. Progress and opportunities in the characterization of cellulose - an important regulator of cell wall growth and mechanics[J]. Frontiers in Plant Science, 2019, 9: 1894.
CHENG G, ZHANG X, Simmons B, et al. Theory, practice and prospects of X-ray and neutron scattering for lignocellulosic biomass characterization: towards understanding biomass pretreatment[J]. Energy & Environmental Science, 2015, 8(2): 436-455.
路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5): 838-858.
LU Y, WEI X Y, ZONG Z M, et al. Structural investigation and application of lignins[J]. Progress in Chemistry, 2013, 25(5): 838-858.
Grantham N J, Wurman-Rodrich J, Terrett O M, et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls[J]. Nature Plants, 2017, 3(11): 859-865.
WANG T, Zabotina O, HONG M. Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance[J]. Biochemistry, 2012, 51(49): 9846-9856.
吕建雄, 鲍甫成, 姜笑梅, 等. 汽蒸处理对木材渗透性的影响[J]. 林业科学, 1994, 30(4): 352-357.
LYU J X, BAO F C, JIANG X M, et al. Effect of steaming on the permeability of wood[J]. Scientia Silvae Sinicae, 1994, 30(4): 352-357.
黄荣凤, 高志强, 吕建雄. 木材湿热软化压缩技术及其机制研究进展[J]. 林业科学, 2018, 54(1): 154-161.
HUANG R F, GAO Z Q, LYU J X. Research development of wood compression technology and its mechanism under hydro-thermal condition[J]. Scientia Silvae Sinicae, 2018, 54(1): 154-161.
FU Z Y, ZHOU Y D, GAO X, et al. Changes of water related properties in radiata pine wood due to heat treatment[J]. Construction and Building Materials, 2019, 227: 116692.
顾炼百, 丁涛, 江宁. 木材热处理研究及产业化进展[J]. 林业工程学报, 2019, 4(4): 1-11.
GU L B, DING T, JIANG N. Development of wood heat treatment research and industrialization[J]. Journal of Forestry Engineering, 2019, 4(4): 1-11.
李坚, 孙庆丰, 王成毓, 等. 木材仿生智能科学引论[M]. 北京: 科学出版社, 2018.
李坚. 大自然的启发——木材仿生与智能响应[J]. 科技导报, 2016, 34(19): 1.
李坚, 李莹莹. 木质仿生智能响应材料的研究进展[J]. 森林与环境学报, 2019, 39(4): 337-343.
LI J, LI Y Y. Research progress of wood materials with stimuli-responsive properties[J]. Journal of Forest and Environment, 2019, 39(4): 337-343.
李坚, 甘文涛, 王立娟. 木材仿生智能材料研究进展[J]. 木材科学与技术, 2021, 35(4): 1-14.
LI J, GAN W T, WANG L J. Research progress on wood biomimetic intelligent materials[J]. Chinese Journal of Wood Science and Technology, 2021, 35(4): 1-14.
Cremaldi J C, Bhushan B. Bioinspired self-healing materials: lessons from nature[J]. Beilstein Journal of Nanotechnology, 2018, 9: 907-935.
CHEN C J, KUANG Y D, ZHU S Z, et al. Structure–property–function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5(9): 642-666.
刘一星, 赵广杰. 木材学[M]. 2版. 北京: 中国林业出版社, 2012.
Kang X, Kirui A, Dickwella Widanage M C, et al. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR[J]. Nature Communications, 2019, 10(1): 347.
Ross R J, USDA Forest Service F P L. Wood handbook: wood as an engineering material[R]. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2010.
KONG W Q, WANG C W, JIA C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J]. Advanced Materials, 2018, 30(39): 1801934.
CHEN Y P, DANG B K, JIN C D, et al. Processing lignocellulose-based composites into an ultrastrong structural material[J]. ACS Nano, 2019, 13(1): 371-376.
XIAO S L, CHEN C J, XIA Q Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material[J]. Science, 2021, 374(6566): 465-471.
SUN J G, GUO H Z, Schädli G N, et al. Enhanced mechanical energy conversion with selectively decayed wood[J]. Science Advances, 2021, 7(11): eabd9138.
Dudukovic N A, Fong E J, Gemeda H B, et al. Cellular fluidics[J]. Nature, 2021, 595(7865): 58-65.
CHEN Z H, ZHUO H, HU Y J, et al. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage[J]. Advanced Functional Materials, 2020, 30(17): 1910292.
YU Z L, YANG N, ZHOU L C, et al. Bioinspired polymeric woods[J]. Science Advances, 2018, 4(8): eaat7223.
Tajvidi M, Gardner D J. Step aside, aluminum honeycomb[J]. Science, 2021, 374(6566): 400-401.
SUN J G, GUO H Y, Ribera J, et al. Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications[J]. ACS Nano, 2020, 14(11): 14665-14674.
ZHU M W, SONG J W, LI T, et al. Highly anisotropic, highly transparent wood composites[J]. Advanced Materials, 2016, 28(26): 5181-5187.
尹江苹. 湿热-压缩共同作用对杉木细胞壁结构与性能的影响[D]. 北京: 中国林业科学研究院, 2016.
董梦妤. 古建筑和出土饱水木材鉴别与细胞壁结构变化[D]. 北京: 北京林业大学, 2017.
WU K Z, ZHANG L, YUAN Y F, et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries[J]. Advanced Materials, 2020, 32(32): 2002292.
Zainal S H, Mohd N H, Suhaili N, et al. Preparation of cellulose-based hydrogel: a review[J]. Journal of Materials Research and Technology, 2021, 10: 935-952.
陆弘毅, 丁春香, 翟胜丞, 等. 透明木材的性能及其应用研究进展[J]. 高分子通报, 2021(7): 13-26.
LU H Y, DING C X, ZHAI S C, et al. Research progress of properties and applications of transparent wood[J]. Polymer Bulletin, 2021(7): 13-26.
相关作者
相关机构
微信公众号