木材信息学:发展、应用与展望
Wood Informatics: History of Development, Application, and Prospective Trend
- 2021年35卷第4期 页码:15-24
DOI: 10.12326/j.2096-9694.2021063
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所
2.中国林业科学研究院木材标本馆,北京 100091
扫 描 看 全 文
何拓,焦立超,郭娟等.木材信息学:发展、应用与展望[J].木材科学与技术,2021,35(04):15-24.
HE Tuo,JIAO Li-chao,GUO Juan,et al.Wood Informatics: History of Development, Application, and Prospective Trend[J].Chinese Journal of Wood Science and Technology,2021,35(04):15-24.
简要介绍木材科学和信息学发展以及信息学在木材科学领域的应用,在此基础上,首次提出“木材信息学”概念,分别从定义和框架、研究内容和应用等方面对“木材信息学”进行阐述,并展望“木材信息学”的发展。
This paper briefly reviews the history of wood science and informatics development, as well as the application of informatics in the wood science field. On this basis, the term of "Wood Informatics" is proposed for the first time, with elaboration of the theoretical definition and framework, research contents, and application practices, respectively. Finally, the future trend of "Wood Informatics" is projected.
木材信息学细胞壁木材性质科学数据交叉学科
wood informaticscell wallwood propertiesscientific datainterdisciplinarity
唐耀. 中国木材学[M].北京: 商务印书馆, 1935.
成俊卿. 木材学[M].北京: 中国林业出版社, 1985.
鲍甫成, 江泽慧. 中国主要人工林树种木材性质[M].北京: 中国林业出版社, 1998.
江泽慧, 姜笑梅. 木材结构与其品质特性的相关性[M].北京: 科学出版社, 2008.
李坚. 大自然的启发—木材仿生与智能响应[J].科技导报, 2016, 34(19): 1.
吴义强. 木材科学与技术研究新进展[J].中南林业科技大学学报, 2021, 41(1): 1-28.
WU Y Q. Newly advances in wood science and technology[J].Journal of Central South University of Forestry & Technology, 2021, 41(1): 1-28.
肖小溪, 甘泉, 蒋芳, 等. “融合科学”新范式及其对开放数据的要求[J].中国科学院院刊, 2020, 35(1): 3-10.
XIAO X X, GAN Q, JIANG F, et al. Convergence science as a new paradigm and its requirement for open data [J].Bulletin of the Chinese Academy of Sciences, 2020, 35(1): 3-10.
Hey T, Tansley S, Tolle K. The Fourth Paradigm: Data intensive scientific discovery[C].Redmond, WA: Microsoft Research, 2009.
CHEN C J, KUANG Y D, ZHU S Z, et al. Structure-property-function relationships of natural and engineered wood[J].Nature Reviews Materials, 2020, 5(9): 642-666.
李坚. 木材科学[M].3版. 北京: 科学出版社, 2014.
罗建举. 木与人类文明[M].北京: 科学出版社, 2015.
陈绪和, 叶克林, 姜笑梅, 等. 中国木材科学发展战略构想[J].世界林业研究, 1993, 6(5): 15-22.
CHEN X H, YE K L, JIANG X M, et al. Some tentative ideas on the development strategy of wood science in China[J].World Forestry Research, 1993, 6(5): 15-22.
杨文斌, 刘一星, 刘迎涛. 人工神经网络在木材工业中的应用前景[J].林业科学, 2004, 40(6): 153-157.
YANG W B, LIU Y X, LIU Y T. The application prospects of artificial neural network in the wood industries[J].Scientia Silvae Sinicae, 2004, 40(6): 153-157.
江泽慧, 姜笑梅, 周玉成, 等. 杉木微观结构与其品质特性关系模型的一类神经网络建模方法[J].林业科学, 2005, 41(4): 133-139.
JIANG Z H, JIANG X M, ZHOU Y C, et al. A kind of NN modeling method of relational model of Chinese fir microstructure and its material characteristic[J].Scientia Silvae Sinicae, 2005, 41(4): 133-139.
焦立超, 王霄, 殷亚方. 促进绿色未来的全球木材科学与技术研究进展——国际林联第25届世界大会木材议题综述[J].世界林业研究, 2020, 33(6): 1-8.
JIAO L C, WANG X, YIN Y F. Global research advances in wood science and technology for a green future: a review of wood topics in XXV IUFRO World Congress[J].World Forestry Research, 2020, 33(6): 1-8..
程学旗, 梅宏, 赵伟, 等. 数据科学与计算智能:内涵、范式与机遇[J].中国科学院院刊, 2020, 35(12): 1470-1481.
CHENG X Q, MEI H, ZHAO W, et al. Data science and computing intelligence: concept, paradigm, and opportunities [J].Bulletin of Chinese Academy of Sciences, 2020, 35(12): 1470-1481.
Friedman C. What informatics is and isn’t[J].Journal of the American Medical Informatics Association, 2013, 20(2): 224–226.
闫学杉. 关于21世纪信息科学发展的一些见解[J].科技导报, 1999, 17(8): 3-6.
YAN X S. Some viewpoints on the development of information science in the 21st century[J].Science & Technology Review, 1999, 17(8): 3-6.
欧阳曙光, 贺福初. 生物信息学: 生物实验数据和计算技术结合的新领域[J].科学通报, 1999, 44(14): 1457-1468.
宋庆功. 材料信息学初探[J].科学通报, 2003, 48(22): 2384-2387.
RAMAKRISHNA S, ZHANG T Y, LU W C, et al. Materials informatics[J].Journal of Intelligent Manufacturing, 2019, 30(6): 2307-2326.
ZHANG Z N, YIN N, CHEN S, et al. Tribo-informatics: Concept, architecture, and case study[J].Friction, 2021, 9(3): 642-655.
何天相. 中国木材解剖研究的回顾与展望[J].广东林业科技, 1991, 7(1): 1-4.
姜笑梅, 程业明, 殷亚方. 中国裸子植物木材志[M].北京: 科学出版社, 2010.
姜笑梅, 殷亚方, 刘波. 木材树种识别技术现状、发展与展望[J].木材工业, 2010, 24(4): 36-39.
JIANG X M, YIN Y F, LIU B. Current status, development and prospect of wood identification technology[J].China Wood Industry, 2010, 24(4): 36-39.
HE T, JIAO L C, WIEDENHOEFT A C, et al. Machine learning approaches outperform distance- and tree-based methods for DNA barcoding ofPterocarpus wood[J].Planta, 2019, 249(5): 1617-1625.
ZHANG M M, ZHAO G J, GUO J, et al. A GC-MS protocol for separating endangered and non-endangered Pterocarpus wood species[J].Molecules, 2019, 24(4): 799.
HE T, LU Y, JIAO L C, et al. Developing deep learning models to automate rosewood tree species identification for CITES designation and implementation[J].Holzforschung, 2020, 74(12): 1123-1133.
JIAO L C, LU Y, HE T, et al. DNA barcoding for wood identification: global review of the last decade and future perspective[J].IAWA Journal, 2020, 41(4): 620-643.
董梦妤. 古建筑和出土饱水木材鉴别与细胞壁结构变化[D].北京: 中国林业科学研究院, 2017.
王树芝. 木材考古学概论[J].农业考古,2017(6): 7-12.
GUO J, XIAO L, HAN L, et al. Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2400 years old[J].IAWA Journal, 2019, 40(4): 820-844.
Fritts H. Tree rings and climate[M].Elsevier, 1976.
Trouet V, Babst F, Meko M. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context[J].Nature Communications, 2018(9): 1-9.
朱良军, 李宗善, 王晓春. 树轮木质部解剖特征及其与环境变化的关系[J].植物生态学报, 2017, 41(2): 238-251.
ZHU L J, LI Z S, WANG X C. Anatomical characteristics of xylem in tree rings and its relationship with environments[J].Chinese Journal of Plant Ecology, 2017, 41(2): 238-251.
张晓涛, 王哲, 王喜明. 木材科学研究中的化学问题[J].世界林业研究, 2014, 27(4): 48-53.
ZHANG X T, WANG Z, WANG X M. Chemical issues in wood science research[J].World Forestry Research, 2014, 27(4): 48-53.
杨昇, 李改云. 金丝楸木材化学成分的不均一性[J].林业科学, 2021, 57(1): 169-177.
YANG S, LI G Y. Chemical composition heterogeneity of Catalpa bungeana wood[J].Scientia Silvae Sinicae, 2021, 57(1): 169-177.
GUO J, ZHANG M M, LIU J A, et al. Evaluation of the deterioration state of archaeological wooden artifacts: a nondestructive protocol based on direct analysis in real time-mass spectrometry (DART-MS) coupled to chemometrics[J].Analytical Chemistry, 2020, 92(14): 9908-9915.
Ma R M, Luo T F. PI1M: a benchmark database for polymer informatics[J].Journal of Chemical Information and Modeling, 2020, 60(10): 4684-4690.
秦特夫, 黄洛华. 5种不同品系相思木材的化学性质 I.木材化学组成及差异性[J].林业科学研究, 2005, 18(2): 191-194.
QIN T F, HUANG L H. Study on the difference of chemical properties among five Acacia species woods I.Study on the difference of chemical composition[J].Forest Research, 2005, 18(2): 191-194.
张静晓. 基于化学信息学方法的中药作用机理模拟研究[D].大连: 大连理工大学, 2015.
孔波, 蔡佳校, 邹有, 等. 基于NSGA-Ⅱ遗传算法的烟用香精数字化调香研究及应用[J].烟草科技, 2020, 53(2): 72-79.
KONG B, CAI J X, ZOU Y, et al. Research and application of digital flavoring method based on NSGA-Ⅱgenetic algorithm[J].Tobacco Science & Technology, 2020, 53(2): 72-79.
鲍甫成. 中国木材科学近期主攻方向[J].世界林业研究, 1994, 7(6): 1-5.
费本华, 江泽慧, 虞华强, 等. 人工经济林木材性质研究[J].林业科学, 2005, 41(1): 116-122.
FEI B H, JIANG Z H, YU H Q, et al. Study on the properties of plantation timber[J].Scientia Silvae Sinicae, 2005, 41(1): 116-122.
吕建雄, 蒋佳荔. 木材动态黏弹性基础研究[M].北京: 科学出版社, 2015.
付宗营, 蔡英春, 高鑫, 等. 基于人工神经网络模型的木材干燥应变模拟预测[J].林业科学, 2020, 56(6): 76-82.
FU Z Y, CAI Y C, GAO X, et al. Simulation of drying strain based on artificial neural network model[J].Scientia Silvae Sinicae, 2020, 56(6): 76-82.
尹世逵. 基于NIR的木材物理力学性质估测及模型优化研究[D].哈尔滨: 东北林业大学, 2019.
李明宝. 基于有限元理论的木材力学建模与仿真研究[M].哈尔滨: 东北林业大学出版社, 2008.
郭宇, 李超, 李英洁, 等. 木材细胞壁与木材力学性能及水分特性之间关系研究进展[J].林产工业, 2019, 46(8): 14-18.
GUO Y, LI C, LI Y J, et al. Research progress on the relationship between wood cell wall and wood mechanical properties and moisture properties[J].China Forest Products Industry, 2019, 46(8): 14-18.
冯德君, 赵泾峰, 陈卫华. 秦黑杨杂交新品种木材纤维形态及物理力学性质[J].西北林学院学报, 2021, 36(2): 198-201, 212.
FENG D J, ZHAO J F, CHEN W H. Properties and fiber morphology of “Qinhei Yang” woods[J].Journal of Northwest Forestry University, 2021, 36(2): 198-201, 212.
孙海燕, 苏明垒, 王玉荣. 木材细胞壁力学性能与细胞壁组分和构造的相关性研究[J].林产工业, 2018, 45(10): 22-27.
SUN H Y, SU M L, WANG Y R. Study on the relationship between the mechanical properties and the components, structures of wood cell walls[J].China Forest Products Industry, 2018, 45(10): 22-27.
李超. 人工林杉木微观构造对物理力学性能影响关键因子研究[D].呼和浩特: 内蒙古农业大学,2020.
钟永, 武国芳, 陈勇平, 等. 结构用木竹材料弹性模量标准值确定方法[J].建筑结构学报, 2021, 42(2): 142-150, 177.
ZHONG Y, WU G F, CHEN Y P, et al. Determination method for characteristic value of elastic modulus of structural wood and bamboo materials[J].Journal of Building Structures, 2021, 42(2): 142-150, 177.
赵广杰. 木材细胞壁的构造及其主成分的堆积过程[J].北京林业大学学报, 1999, 21(1): 72-79
ZHAO G J. Structure and formation process of wood cell wall[J].Journal of Beijing Forestry University, 1999, 21(1): 72-79.
Salmén L, Burgert I. Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture[J].Holzforschung, 2009, 63(2): 121-129. DOI:10.1515/hf.2009.011http://dx.doi.org/10.1515/hf.2009.011.
Yin Y F, Berglund L, Salmén L. Effect of steam treatment on the properties of wood cell walls[J].Biomacromolecules, 2011, 12(1): 194-202.
Martínez-Sancho E, Slámová L, Morganti S, et al. The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe[J].Scientific Data, 2020(7): 1.
Piermattei A, von Arx G, Avanzi C, et al. Functional relationships of wood anatomical traits in Norway spruce[J].Frontiers in Plant Science, 2020(11): 683.
郭华东. 科学大数据—国家大数据战略的基石[J].中国科学院院刊, 2018, 33(8): 768-773.
GUO H D. Scientific big data—A footstone of national strategy for big data[J]Bulletin of the Chinese Academy of Sciences, 2018, 33(8): 768-773.
FAO and UNEP. The State of the World’s Forests 2020. Forests, biodiversity and people[C].Rome, 2020. https://doi.org/10.4060/ca8642enhttps://doi.org/10.4060/ca8642en.
郑万钧. 中国树种分类分布的研究[J].林业科学, 1981, 17(4): 453-455.
ZHENG W J. Notes on the scientific names and geographical distribution of some Chinese trees[J].Scientia Silvae Sinicae, 1981, 17(4): 453-455.
蓝苏榕. 基于树木生物学特征的树种检索系统的研究与实现[D].北京: 北京林业大学, 2014.
何天相. 木材解剖学[M].广州: 中山大学出版社,1994.
HE T, MARCO J, SOARES R, et al. Machine learning models with quantitative wood anatomy data can discriminate between Swietenia macrophylla and Swietenia mahagoni[J].Forests, 2019, 11(1): 36.
Chapman A D, Busby J R. Linking plant species information to continental biodiversity inventory, climate modeling and environmental monitoring[M]//Mapping the Diversity of Nature. Dordrecht: Springer Netherlands, 1994: 179-195.
IAWA Committee. Index Xylariorum 4.1. http://www.iawa-website.org/uploads/soft/Abstracts/Index%20Xylariorum%204.1.pdfhttp://www.iawa-website.org/uploads/soft/Abstracts/Index%20Xylariorum%204.1.pdf.
何拓, 高瑞清, 焦立超, 等. 世界木材标本馆现状与发展建议[J].木材工业, 2020, 34(3): 40-43, 55.
HE T, GAO R Q, JIAO L C, et al. Present status of global leading Xylaria and suggestions for Xylaria development in China[J].China Wood Industry, 2020, 34(3): 40-43, 55.
Willis KJ, Paton AJ, Smith RJ. Science Collections Strategy 2018-2028[C].Royal Botanic Gardens, Kew, 2018.
Deklerck V, Mil T D, Kondjo P, et al. Sleeping beauties in materials science: unlocking the value of xylarium specimens in the search for timbers of the future[J].Holzforschung, 2019, 73(10): 889-897.
曾艳, 周桔. 加强我国战略生物资源有效保护与可持续利用[J].中国科学院院刊, 2019, 34(12): 1345-1350.
ZENG Y, ZHOU J. Strengthening effective protection and sustainable utilization of strategic biological resources in China[J].Bulletin of the Chinese Academy of Sciences, 2019, 34(12): 1345-1350.
丁奉龙, 刘英, 贺婷, 等. 人工智能在木材加工中的应用[J].世界林业研究, 2021, 34(1): 42-47.
DING F L, LIU Y, HE T, et al. Application of artificial intelligence in wood processing[J].World Forestry Research, 2021, 34(1): 42-47.
赵桂玲, 李响, 曾庆银, 等. 基于需求导向的林学基础研究关键科学问题[J].中国科学基金, 2019, 33(4): 394-402.
ZHAO G L, LI X, ZENG Q Y, et al. The key scientific questions for demand-oriented basic researches in forestry[J].Bulletin of National Natural Science Foundation of China, 2019, 33(4): 394-402.
王卓, 王礞, 雍歧龙, 等. 材料信息学及其在材料研究中的应用[J].中国材料进展, 2017, 36(2): 132-140.
WANG Z, WANG M, YONG Q L, et al. Materials informatics and its application in materials research[J].Materials China, 2017, 36(2): 132-140.
Rhee S Y, Birnbaum K D, Ehrhardt D W. Towards building a plant cell atlas[J].Trends in Plant Science, 2019, 24(4): 303-310.
Fernandes DDS, Almeida VE, Fontes MM. et al. Simultaneous identification of the wood types in aged cachaças and their adulterations with wood extracts using digital images and SPA-LDA[J].Food Chemistry, 2019, 273: 77-84.
ZHANG M, ZHAO GJ, LIU B, et al. Wood discrimination analyses of Pterocarpus tinctorius and endangered Pterocarpus santalinususing DART-FTICR-MS coupled with multivariate statistics[J].IAWA Journal, 2019b, 40(1), 58-74.
Deklerck V, De Ligne L, Espinoza E, et al. Assessing the natural durability of xylarium specimens: mini-block testing and chemical fingerprinting for small-sized samples[J].Wood Science and Technology, 2020, 54(4): 981-1000.
张喆. 数字散斑相关法测量木材断裂韧性的应用研究[D].北京: 北京林业大学, 2013.
ZHAO Y Y, MAN Y, WEN J L, et al. Advances in imaging plant cell walls[J].Trends in Plant Science, 2019, 24(9): 867-878.
何拓, 刘守佳, 陆杨, 等. 木材树种计算机视觉识别技术发展与应用[J].林业工程学报, 2021, 6(3): 18-27.
HE T, LIU S J, LU Y, et al. Advances and prospects of wood identification technology coupled with computer vision[J].Journal of Forestry Engineering, 2021, 6(3): 18-27.
李若尘, 朱悠翔, 孙卫民, 等. 基于深度学习的木材缺陷图像的识别与定位[J].数据采集与处理, 2020, 35(3): 494-505.
LI R C, ZHU Y X, SUN W M, et al. Recognition and localization of wood defect image based on deep learning[J].Journal of Data Acquisition and Processing, 2020, 35(3): 494-505.
王利松, 陈彬, 纪力强, 等. 生物多样性信息学研究进展[J].生物多样性, 2010, 18(5): 429-443.
WANG L S, CHEN B, JI L Q, et al. Progress in biodiversity informatics[J].Biodiversity Science, 2010, 18(5): 429-443.
Mauri A, Strona G, San-Miguel-ayanz J. EU-Forest, a high-resolution tree occurrence dataset for Europe[J].Scientific Data, 2017, 4: 160123. https://doi.org/10.1038/sdata.2016.123https://doi.org/10.1038/sdata.2016.123.
Grissino-Mayer H D, Fritts H C. The International Tree-Ring Data Bank: an enhanced global database serving the global scientific community[J].Holocene, 1997, 7(2): 235-238.
Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum[J].Ecology Letters, 2009, 12(4): 351-366.
Wegner L, Arx V, Sass-Klaassen U, et al. ROXAS–an efficient and accurate tool to detect vessels in diffuse-porous species[J].IAWA Journal, 2013, 34(4): 425-432.
Arx G V, Crivellaro A, Prendin A L, et al. Quantitative wood anatomy-practical guidelines[J].Frontiers in Plant Science, 2016, 7: 781.
Koch G, Richter H G, Schmitt U. Design and application of CITESwoodID Computer-aided identification and description of CITES-protected timbers[J].IAWA Journal, 2011, 32(2): 213-220.
林业科学数据中心. 林业科学数据库和数据共享技术标准与规范(第二辑)[M].北京: 中国林业出版社, 2006.
司莉, 贾欢. 科学数据的标准规范体系框架研究[J].图书馆, 2016(5): 5-9.
SI L, JIA H. Study on standard and specification systematic framework of scientific data[J].Library, 2016(5): 5-9.
牛程程, 李少波, 胡建军, 等. 机器学习在材料信息学中的应用综述[J].材料导报, 2020, 34(23): 23100-23108.
NIU C C, LI S B, HU J J, et al. Application of machine learning in material informatics: a survey[J].Materials Reports, 2020, 34(23): 23100-23108.
YU Z L, YANG N, ZHOU L C, et al. Bioinspired polymeric woods[J].Science Advances, 2018, 4(8): eaat7223.
GUAN H, CHENG Z Y, WANG X Q. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J].ACS Nano, 2018, 12(10): 10365-10373.
关联资源
相关作者
相关机构
微信公众号