木材仿生智能材料研究进展
Research Progress on Wood Biomimetic Intelligent Materials
- 2021年35卷第4期 页码:1-14
DOI: 10.12326/j.2096-9694.2021051
扫 描 看 全 文
1.东北林业大学生物质材料科学与技术教育部重点实验室,黑龙江哈尔滨 150040
2.东北林业大学木质新型材料教育部工程研究中心,黑龙江哈尔滨 150040
扫 描 看 全 文
李坚,甘文涛,王立娟.木材仿生智能材料研究进展[J].木材科学与技术,2021,35(04):1-14.
LI Jian,GAN Wen-tao,WANG Li-juan.Research Progress on Wood Biomimetic Intelligent Materials[J].Chinese Journal of Wood Science and Technology,2021,35(04):1-14.
木材是人类最先注意和最早利用的材料之一,千百年来,一直被用作建筑和家居耗材。面对日益严峻的环境污染和能源枯竭,如何优质和高效利用木材已成为木材工业面向世界科技前沿、面向人民生命健康的“卡脖子”问题。向自然学习,创生具有仿生结构的智能木材,是实现木材的自增值性、自修复性、自诊断性和自适应性,使木材从更高技术层面为社会进步服务的有效途径。本文针对近年来仿生构建先进木基功能材料在能源、环境和智能制造领域发展进程中出现的新理论、新技术和战略性作用开展论述,梳理代表性功能木材开发研究的现状和发展趋势,凝练木材仿生智能材料在加工技术和应用方面的问题,提出木材仿生科学发展的重点方向。
Wood is one of the first noted and the oldest materials used in human history. Wood has been utilized as the building and home furnishing materials for thousands of years. With the intensifying of environment pollution and energy depletion, how to use wood in a high-quality and efficient way has become a bottleneck problem for the wood industry to achieve the goals of the scientific frontier and the human health. In order to increase the self-value, self-repair, self-diagnosis, and self-adaptability of natural wood, by learning from nature, we developed the intelligent wood products with bionic structures, which have proved to be an effective strategy to serve our society at a highly technical level. This review aims to highlight the significance of bionic constructed advanced functional wood products in the field of energy, environmental protection and intelligent manufacturing by discussing the basic theories, novel technologies and strategic impacts. We highlight the current literature in details including the development trends regarding the functional wood materials, and the challenges in manufacturing technologies and applications. In the conclusion, we provide suggestions for the future directions and opportunities of the wood bionic science.
木材仿生智能低碳可持续发展
woodbionicsintelligencelow carbonsustainable development
PhillipsFred. 联合国可持续发展目标——技术不确定性背景下的长期项目[J].Engineering, 2020, 6(6): 681-685.
PhillipsFred. The SDG Project: A long-term project under technological uncertainty [J].Engineering, 2020, 6(6): 600-603. https://doi.org/10.1016/j.eng.2020.03.013https://doi.org/10.1016/j.eng.2020.03.013.
O’NeillSean. 可持续发展的解决方案——2019年全球重大挑战峰会的第二天议程[J].Engineering, 2020, 6(4): 422-424.
O’NeillSean. Sustainable solutions: Global grand challenges summit 2019, Day Two [J].Engineering, 2020, 6(4): 376-378. https://doi.org/10.1016/j.eng.2020.02.001https://doi.org/10.1016/j.eng.2020.02.001.
Suaria G, Achtypi A, Perold V, et al. Microfibers in oceanic surface waters: A global characterization[J].Science Advances, 2020, 6(23): eaay 8493. DOI: 10.1126/sciadv.aay8493http://dx.doi.org/10.1126/sciadv.aay8493.
国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[R].北京: 国家统计局, 2021.
国务院. 国家中长期科学和技术发展规划纲要[M].北京: 中国法制出版社, 2006.
郭明辉, 李坚, 关鑫. 木材碳学[M].北京: 科学出版社, 2012.
国家林业局. 中国森林资源报告(2009—2013)[M].北京: 中国林业出版社, 2014.
国家林业局. 第八次全国森林资源清查结果[J].林业资源管理, 2014(1): 1-2.
江雷, 冯琳. 仿生智能纳米界面材料[M].北京: 化学工业出版社, 2007.
Fortorre Y, Skotheim J M, Dumais J, et al. How the Venus flytrap snaps[J].Nature, 2005, 433(7024): 421-425. DOI: 10.1038/nature03185http://dx.doi.org/10.1038/nature03185.
Armon S, Efrati E, Kupferman R, et al. Geometry and mechanics in the opening of chiral seedpod. science[J].Science, 2011, 333(6050): 1726-1730.
李坚, 孙庆丰. 大自然给予的启发——木材仿生科学刍议[J].中国工程科学, 2014, 16(4): 4-12.
LI J, SUN Q F. Inspirations from nature: Preliminary discussion of wood bionics [J].Strategic Study of CAE, 2014, 16(4): 4-12.
李坚. 大自然的启发——木材仿生与智能响应[J].科技导报, 2016, 34(19): 1.
李坚, 孙庆丰, 王成毓, 等. 木材仿生智能科学引论[M].北京: 科学出版社, 2018.
李坚. 竹材仿生智能科学[M].北京: 科学出版社, 2018.
陈碧琪, 朱剑刚.基于环境友好型的木材仿生科学研究进展[J].林产工业, 2021, 58(1): 33-37.
CHEN B Q, ZHU J G. Research progress of wood bionics based on environment-friendly [J].Forest Products Industry, 2021, 58(1): 33-37.
刘一星, 赵广杰. 木材学[M].2版. 北京: 中国林业出版社, 2012.
李坚. 生物质复合材料学[M].北京: 科学出版社, 2008.
吕建雄, 蒋佳荔. 木材动态黏弹性基础研究[M].北京: 科学出版社, 2015.
张璧光. 木材科学与技术研究进展[M].北京: 中国环境科学出版社, 2004.
CHEN C J, KUANG Y D, ZHU S Z, et al. Structure–property–function relationships of natural and engineered wood[J].Nature Reviews Materials, 2020, 5(9): 642-666.
LI T, CHEN C J, Brozena A H, et al. Developing fibrillated cellulose as a sustainable technological material[J].Nature, 2021, 590(7844): 47-56.
WANG J F, ZHANG D H, CHU F X. Wood-derived functional polymeric materials[J].Advanced Materials, 2020: 2001135.
Berglund L A, Burgert I. Bioinspired wood nanotechnology for functional materials[J].Advanced Materials, 2018, 30(19): e1704285. DOI: 10.1002/adma.201704285http://dx.doi.org/10.1002/adma.201704285.
JIANG F, LI T, LI Y J, et al. Wood-based nanotechnologies toward sustainability[J].Advanced Materials, 2018, 30(1):1703453.
LUO J, WANG Z M, XU L, et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics [J].Nature Communications, 2019, 10(1):5147. DOI: 10.1038/s41467-019-13166-6http://dx.doi.org/10.1038/s41467-019-13166-6.
CAI C C, MO J L, LU Y X, et al. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment[J].Nano Energy, 2021, 83: 105833.
HUANG Y, CHEN Y, FAN X Y, et al. Wood derived composites for high sensitivity and wide linear-range pressure sensing[J].Small, 2018, 14(31): 1801520.
CHEN Z, ZHUOH, HUY, et al. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage [J].Advanced Functional Materials, 2019, 30(17), 1910292.
Luz G M, Mano J F. Biomimetic design of materials and biomaterials inspired by the structure of nacre[J].Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1893): 1587-1605. DOI: 10.1098/rsta.2009.0007http://dx.doi.org/10.1098/rsta.2009.0007.
MAO L B, GAO H L, YAO H B, et al. Synthetic nacre by predesigned matrix-directed mineralization[J].Science, 2016, 354(6308): 107-110.
唐忠荣. 人造板制造学(上、下册)[M].北京: 科学出版社, 2015.
中国林产工业协会, 国家林业局林业工业规划设计院. 中国人造板产业报告[R],2020.
Fang C H, Mariotti N, Cloutier A, et al. Densification of wood veneers by compression combined with heat and steam[J].European Journal of Wood and Wood Products, 2012, 70(1): 155-163. https://doi.org/10.1007/s00107-011-0524-4https://doi.org/10.1007/s00107-011-0524-4.
Pařil P, Brabec M, Maňák O, et al. Comparison of selected physical and mechanical properties of densified beech wood plasticized by ammonia and saturated steam[J].European Journal of Wood and Wood Products, 2014, 72(5): 583-591.
CHEN Y P, DANG B K, JIN C D, et al. Processing lignocellulose-based composites into an ultrastrong structural material[J].ACS Nano, 2019, 13(1): 371-376.
CHEN Y, FU J Z, DANG B KB, et al. Artificial wooden nacre: a high specific strength engineering material[J].ACS Nano, 2020, 14(2): 2036-2043.
SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material[J].Nature, 2018, 554(7691): 224-228.
GAN W, CHEN C J, WANG Z Y, et al. Dense, self-formed char layer enables a fire-retardant wood structural material[J].Advanced Functional Materials, 2019, 29(14):1807444.
YU Z L, YANG N, ZHOU L C, et al. Bioinspired polymeric woods[J].Science Advances, 2018, 4(8): eaat 7223. DOI: 10.1126/sciadv.aat7223http://dx.doi.org/10.1126/sciadv.aat7223.
YU Z L, QIN B, MA Z Y, et al. Emerging bioinspired artificial woods[J].Advanced Materials, 2020: 2001686.
GUAN Q F, YANG H B, HAN Z M, et al. An all-natural bioinspired structural material for plastic replacement[J].Nature Communications, 2020, 11(1): 5401. DOI: 10.1038/s41467-020-19174-1http://dx.doi.org/10.1038/s41467-020-19174-1.
GUAN Q F, HAN Z M, YANG H B, et al. Regenerated isotropic wood[J].National Science Review, 2020:1-9. DOI:10.1093/nsr/nwaa230http://dx.doi.org/10.1093/nsr/nwaa230.
LI Y, FU Q, YU S, et al. Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance[J].Biomacromolecules, 2016, 17(4): 1358-1364.
FU Q, YAN M, JungstedtE, et al. Transparent plywood as a load-bearing and luminescent biocomposite[J].Composites Science and Technology, 2018, 164: 296-303.
CHEN H, BAITENOV A, LI Y, et al. Thickness dependence of optical transmittance of transparent wood: chemical modification effects[J].ACS applied materials & interfaces, 2019, 11(38): 35451-35457. doi:10.1021/acsami.9b11816http://dx.doi.org/10.1021/acsami.9b11816.
ZHU M W, SONG J W, LI T, et al. Highly anisotropic, highly transparent wood composites[J].Advanced Materials, 2016, 28 (35):7563. DOI: 10.1002/adma.201604084http://dx.doi.org/10.1002/adma.201604084.
ZHU M W, LI T, DAVIS C S, et al. Transparent and haze wood composites for highly efficient broadband light management in solar cells[J].Nano Energy, 2016, 26: 332-339.
MI R Y, CHEN C J, Keplinger T, et al. Scalable aesthetic transparent wood for energy efficient buildings[J].Nature Communications, 2020, 11(1): 3836. DOI: 10.1038/s41467-020-17513-whttp://dx.doi.org/10.1038/s41467-020-17513-w.
LI T, ZHU M W, YANG Z, et al. Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation[J].Advanced Energy Materials, 2016, 6(22): 1601122.
YU Z Y, YAO Y J, YAO J N, et al. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications[J].Journal of Materials Chemistry, A. Materials for energy and sustainability, 2017, 5(13):6019-6024.
GAN W T, XIAO S L, GAO L K, et al. Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4: Eu3+ nanoparticle impregnation[J].ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3855-3862.
LANG A W, LI Y Y, De Keersmaecker M, et al. Transparent wood smart windows: polymer electrochromic devices based on poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) electrodes[J].ChemSusChem, 2018, 11(5): 854-863.
Montanari C, LI Y Y, CHEN H, et al. Transparent wood for thermal energy storage and reversible optical transmittance[J].ACS Applied Materials & Interfaces, 2019, 11(22): 20465-20472.
JIA C,LI Y J, YANG Z, et al. Rich mesostructures derived from natural woods for solar steam generation[J].Joule, 2017, 1(3): 588-599.
LIU H, CHEN C J, CHEN G, et al. High-performance solar steam device with layered channels: artificial tree with a reversed design[J].Advanced Energy Materials, 2018, 8(8): 1701616.
CHEN C J, KUANG Y D, HU L B. Challenges and opportunities for solar evaporation[J].Joule, 2019, 3(3): 683-718.
ZHOU J H, GU Y F, LIU P F, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions[J].Advanced Functional Materials, 2019, 29(50): 1903225.
ZHOU L, LI X Q, NI G W, et al. The revival of thermal utilization from the sun: interfacial solar vapor generation[J].National Science Review, 2019, 6(3): 562-578.
LI J L, WANG X Y, LIN Z H, et al. Over 10 kg·m-2·h-1 evaporation rate enabled by a 3D interconnected porous carbon foam[J].Joule, 2020, 4(4): 928-937.
ZHU M W, LI Y J, CHEN G, et al. Tree-Inspired design for high-efficiency water extraction[J].Advanced Materials, 2017, 29(44): 1704107.
LIU K K, JIANG Q S, Tadepallifit S, et al. Wood-graphene oxide composite for highly efficient solar steam generation and desalination[J].ACS Applied Materials & Interfaces, 2017, 9(8): 7675-7681.
XUE G B, LIU K, CHEN Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J].ACS Applied Materials & Interfaces, 2017, 9(17): 15052-15057.
LI T, ZHANG X, Lacey S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J].Nature Materials, 2019, 18(6): 608-613.
HOU D X, LI T, CHEN X, et al. Hydrophobic nanostructured wood membrane for thermally efficient distillation[J].Science Advances, 2019, 5(8): eaaw3203.
FU Q L, Medinal, LI Y Y, et al. Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall[J].ACS Applied Materials & Interfaces, 2017, 9(41): 36154-36163.
LI T, SONG J W, ZHAO X P, et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose[J].Science Advances, 2018, 4(3): eaar3724. DOI:10.1126/sciadv.aar3724http://dx.doi.org/10.1126/sciadv.aar3724.
LI T, ZHAI Y, HE S M, et al. A radiative cooling structural material[J].Science, 2019, 364(6442): 760-763.
CHEN Y P, DANG B K, FU J Z, et al. Cellulose-based hybrid structural material for radiative cooling[J].Nano Letters, 2021, 21(1): 397-404.
YANG H Y, CHAO W X, WANG S Y, et al. Self-luminous wood composite for both thermal and light energy storage[J].Energy Storage Materials, 2019, 18: 15-22.
YANG H Y, LIU Y S, LI J, et al. Full-wood photoluminescent and photothermic materials for thermal energy storage[J].Chemical Engineering Journal, 2021, 403: 126406.
Sharif M K A, Al-Abidi A A, Mat S, et al. Review of the application of phase change material for heating and domestic hot water systems[J].Renewable and Sustainable Energy Reviews, 2015, 42: 557-568.
SU W G, Darkwa J, Kokogiannakis G. Review of solid-liquid phase change materials and their encapsulation technologies[J].Renewable and Sustainable Energy Reviews, 2015, 48: 373-391.
YANG H Y, WANG Y Z, YU Q Q, et al. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage[J].Applied Energy, 2018, 212: 455-464.
CHEN C, ZHANG Y, LI Y, et al. Zwith ultra-high capacitance[J].Energy & Environmental Science, 2017, 10(2): 538-545.
吴义强. 木材科学与技术研究新进展[J].中南林业科技大学学报, 2021, 41(1): 1-28.
WU Y Q. Newly advances in wood science and technology[J].Journal of Central South University of Forestry & Technology, 2021, 41(1): 1-28.
WAN C C, JIAO Y, WEI S, et al. Functional nanocomposites from sustainable regenerated cellulose aerogels: A review[J].Chemical Engineering Journal, 2019, 359: 459-475.
WU Y Q, TAO X, QING Y, et al. Cr-Doped FeNi-P nanoparticles encapsulated into n-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting[J].Advanced Materials, 2019, 31(15): e1900178.
GAO L K, GAN W T, CAO G L, et al. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties[J].Applied Surface Science, 2017, 425: 889-895.
GAO L K, LU Y, LI J, et al. Superhydrophobic conductive wood with oil repellency obtained by coating with silver nanoparticles modified by fluoroalkyl silane[J].Holzforschung, 2016, 70(1): 63-68.
GAO L K, GAN W T, XIAO S L, et al. Enhancement of photo-catalytic degradation of formaldehyde through loading anatase TiO2 and silver nanoparticle films on wood substrates[J].RSC Advances, 2015, 5(65): 52985-52992.
LI Y Y, GAO L K, LI J. Photoresponsive wood-based composite fabricated by a simple drop-coating procedure[J].Wood Science and Technology, 2019, 53(1): 211-226.
Keplinger T, Cabane E, Berg J K, et al. Smart hierarchical bio-based materials by formation of stimuli-responsive hydrogels inside the microporous structure of wood[J].Advanced Materials Interfaces, 2016, 3(16): 1600233.
陶清萍. 磁场生物学效应与生物样品磁学差异性研究[D].合肥: 中国科学技术大学, 2020.
李坚, 甘文涛. 趋磁性木材的制备与多功能化修饰[J].森林与环境学报, 2017, 37(3): 257-265.
LI J, GAN W T. Preparation and multifunctional modification of magnetotactic wood[J].Journal of Forest and Environment, 2017, 37(3): 257-265.
GAN W T, LIU Y, GAO L K, et al. Growth of CoFe2O4 particles on wood template using controlled hydrothermal method at low temperature[J].Ceramics International, 2015, 41(10): 14876-14885.
GAN W T, GAO L K, SUN Q F, et al. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties[J].Applied Surface Science, 2015, 332: 565-572.
Segmehl J S, Laromaine A, Keplinger T, et al. Magnetic wood by in situ synthesis of iron oxide nanoparticles via a microwave-assisted route[J].Journal of Materials Chemistry C, 2018, 6(13): 3395-3402.
CHENG Z, WEI Y Y, LIU C, et al. Lightweight and construable magnetic wood for electromagnetic interference shielding[J].Advanced Engineering Materials, 2020, 22(10): 202000257.
GAN W T, GAO L K, XIAO S L, et al. Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template[J].Journal of Materials Science, 2017, 52(6): 3321-3329.
GAN W T, GAO L K, XIAO S L, et al. Magnetic wood as an effective induction heating material: magnetocaloric effect and thermal insulation[J].Advanced Materials Interfaces, 2017, 4(22): 1700777.
Sevilla M, Fuertes A B. The production of carbon materials by hydrothermal carbonization of cellulose[J].Carbon, 2009, 47(9): 2281-2289.
Hayashi J, Kazehaya A, Muroyama K, et al. Preparation of activated carbon from lignin by chemical activation[J].Carbon, 2000, 38(13): 1873-1878.
Danish M, Ahmad TT. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J].Renewable and Sustainable Energy Reviews, 2018, 87: 1-21.
Yang S T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo[J].Journal of the American Chemical Society, 2009, 131(32):11308-11309.
ZHU S J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J].Nano Research, 2015, 8(2): 355-381.
XIA C L, ZHU S J, FENG T, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots[J].Advanced Science, 2019, 6(23): 1901316.
LI W, CHEN Z J, YU H P, et al. Wood-derived carbon materials and light-emitting materials[J].Advanced Materials, 2020: 202000596.
WU Q, LI W, TAN J, et al. Hydrothermal carbonization of carboxymethylcellulose: One-pot preparation of conductive carbon microspheres and water-soluble fluorescent carbon nanodots[J].Chemical Engineering Journal, 2015, 266: 112-120.
LI W, WANG S C, LI Y, et al. One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels[J].Carbohydrate Polymers, 2017, 175: 7-17.
NIU N, MA Z M, HE F, et al. Preparation of carbon dots for cellular imaging by the molecular aggregation of cellulolytic enzyme lignin[J].Langmuir, 2017, 33(23): 5786-5795.
DING Z Y, LI F F, WEN J L, et al. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass[J].Green Chemistry, 2018, 20(6): 1383-1390. DOI:10.1039/C7GC03218Hhttp://dx.doi.org/10.1039/C7GC03218H.
关联资源
相关作者
相关机构
微信公众号