Theoretical Modeling of the Minimum Ignition Energy of Wood Dust
- Vol. 39, Issue 5, Pages: 32-38(2025)
DOI: 10.12326/j.2096-9694.2025055
移动端阅览


浏览全部资源
扫码关注微信
1.College of Science,Nanjing Forestry University,Nanjing 210037,Jiangsu,China
2.College of Materials Science and Engineering,Nanjing 210037,Jiangsu,China
Received:06 June 2025,
Revised:2025-08-12,
Accepted:18 August 2025,
Published:30 September 2025
移动端阅览
针对现有木粉尘最小点火能(minimum ignition energy,MIE)模型普遍存在未耦合燃烧动力学与热传导过程、预测精度不足等问题,提出一种“球层能量迭代模型”。该模型将点火空间划分为多个球层,各层粉尘在短时间内依次燃烧,形成爆炸传播过程。模型采用阿伦尼乌斯(Arrhenius)公式计算燃烧反应时间,并考虑层间热传导的能量平衡,通过逐层迭代计算点火源所需补充的能量,从而确定MIE。模型在0~500 μm粒径和0.25~2.0 g/L浓度范围内对中密度纤维板粉尘的MIE进行了计算,与BS EN 13821-2002标准下的实验数据(文献[
7
7
])对比,结果显示:相较于传统机理模型高达60%的偏差(文献[
15
15
]),本研究模型计算的理论值与实验数据的平均偏差仅为4%,最大偏差为7%,验证模型在精度与适用性方面的优越性。
To address the limitations of existing theoretical models for predicting the minimum ignition energy (MIE) of wood dust
such as the lack of coupling between combustion dynamics and heat transfer and the insufficient prediction accuracy
this study proposes a “Spherical Layer Energy Iteration Model”. In the model
the ignition space is divid
ed into multiple spherical layers
assuming that the dust in each layer burns continuously within a short period to form an explosion propagation process. By introducing the Arrhenius equation to calculate the combustion reaction duration and incorporating interlayer heat conduction energy balance
the model iteratively computes the supplementary energy required from the ignition source layer by layer
ultimately obtaining the MIE. The model was applied to calculate the MIE of medium density fiberboard wood dust with particle size between 0~500 μm and mass concentration from 0.25~2.0 g/L. When compared with experimental data obtained in accordance with the BS EN 13821-2002 standard (Ref. [
7
7
]
)
the proposed model exhibited an average deviation of only 4% and a maximum deviation of 7%
whereas traditional mechanistic models showed deviations of about 60% (Ref. [
15
15
]
). This outcome validates the model’s significant improvement in accuracy and applicability.
ECKHOFF R K . Dust explosions in the process industries [M ] . 3rd. BostonOxford : Butterworth-Heinemann , 2023 .
中国应急管理部 . 工贸行业粉尘防爆安全规范实施评估报告 [R ] , 2024 : 24 - 35 .
中国安全生产科学研究院 . 粉尘爆炸点火源特性研究 [R ] , 2023 : 45 - 47 .
WEI M C , CHENG Y C , LIN Y Y , et al . Applications of dust explosion hazard and disaster prevention technology [J ] . Journal of Loss Prevention in the Process Industries , 2020 , 68 : 104304 .
GB 15577—2018 , 粉尘防爆安全规程 [S ] .
ECKHOFF R K , RANDEBERG E . Electrostatic spark ignition of sensitive dust clouds of MIE<1mJ [J ] . Journal of Loss Prevention in the Process Industries , 2007 , 20 ( 4/5/6 ): 396 - 401 .
郭露 , 胡涛平 , 喻孜 , 等 . 中密度纤维板中生产粉尘的最小点火能 [J ] . 中国粉体技术 , 2018 , 24 ( 4 ): 23 - 27 .
GUO L , HU T P , YU Z , et al . Minimum ignition energy of wood dust based on MDF production [J ] . China Powder Science and Technology , 2018 , 24 ( 4 ): 23 - 27 .
NIFUKU M , KATOH H . A study on the static electrification of powders during pneumatic transportation and the ignition of dust cloud [J ] . Powder Technology , 2003 , 135 : 234 - 242 .
任纯力 , 李新光 , 王福利 , 等 . 敏感条件对粉尘云最小点火能的影响规律分析 [J ] . 中国安全科学学报 , 2009 , 19 ( 8 ): 77 - 83 .
REN C L , LI X G , WANG F L , et al . Analysis on the influencing laws of sensitive conditions on minimum ignition energy of dust clouds [J ] . China Safety Science Journal , 2009 , 19 ( 8 ): 77 - 83 .
陈国华 , 江湖一佳 , 王新华 . 红木粉爆炸特性实验研究 [J ] . 消防科学与技术 , 2016 , 35 ( 9 ): 1200 - 1203 .
CHEN G H , JIANG H , WANG X H . Study on characteristics of mahogany wood dust explosion [J ] . Fire Science and Technology , 2016 , 35 ( 9 ): 1200 - 1203 .
KURDYUMOV V , BLASCO J , SÁNCHEZ A L , et al . On the calculation of the minimum ignition energy [J ] . Combustion and Flame , 2004 , 136 ( 3 ): 394 - 397 .
李明菊 , 李晓泉 , 丁莉英 , 等 . 蔗糖粉尘最小点火能实验研究 [J ] . 工业安全与环保 , 2018 , 44 ( 3 ): 13 - 15, 64 .
LI M J , LI X Q , DING L Y , et al . Experimental study on minimum ignition energy of sucrose dust [J ] . Industrial Safety and Environmental Protection , 2018 , 44 ( 3 ): 13 - 15, 64 .
HOSSEINZADEH S , BERGHMANS J , DEGREVE J , et al . A model for the minimum ignition energy of dust clouds [J ] . Process Safety and Environmental Protection , 2019 , 121 : 43 - 49 .
任纯力 , 李新光 , 王福利 , 等 . 粉尘云最小点火能数学模型 [J ] . 东北大学学报(自然科学版) , 2009 , 30 ( 12 ): 1702 - 1705 .
REN C L , LI X G , WANG F L , et al . Mathematical model of minimum ignition energy of dust cloud [J ] . Journal of Northeastern University (Natural Science) , 2009 , 30 ( 12 ): 1702 - 1705 .
CHEN T F , VAN CANEGHEM J , DEGRÈVE J , et al . A numerical model for the calculation of the minimum ignition energy of pure and mixture dust clouds [J ] . Process Safety and Environmental Protection , 2022 , 164 : 271 - 282 .
CHEN T F , BERGHMANS J , DEGRÈVE J , et al . A theoretical model for the prediction of the minimum ignition energy of dust clouds [J ] . Journal of Loss Prevention in the Process Industries , 2021 , 73 : 104594 .
CALLÉ S , KLABA L , THOMAS D , et al . Influence of the size distribution and concentration on wood dust explosion: Experiments and reaction modelling [J ] . Powder Technology , 2005 , 157 ( 1/2/3 ): 144 - 148 .
YUAN Z , KHAKZAD N , KHAN F , et al . Dust explosions: a threat to the process industries [J ] . Process Safety and Environmental Protection , 2015 , 98 : 57 - 71 .
GLOR M . Ignition hazard due to static electricity in particulate processes [J ] . Powder Technology , 2003 , 135 : 223 - 233 .
相关文章
相关作者
相关机构

京公网安备11010802024621