Research Progress of Scheduling Optimization for Customized Panel Furniture Workshop Based on Intelligent Algorithms
- Vol. 39, Issue 5, Pages: 74-81(2025)
DOI: 10.12326/j.2096-9694.2025034
移动端阅览


浏览全部资源
扫码关注微信
1.College of Furniture and Industrial Design,Nanjing Forestry University,Nanjing 210037,Jiangsu, China
2.Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University,Nanjing 210037,Jiangsu,China
Received:15 April 2025,
Revised:2025-05-05,
Accepted:08 May 2025,
Published:30 September 2025
移动端阅览
随着消费市场个性化需求升级,板式定制家具行业正加速向小批量、多品种柔性制造转型,车间调度作为核心决策环节,面临工艺耦合性强、多目标冲突及动态扰动频发等挑战,快速响应动态事件并优化调度策略是实现车间高效排产的关键。分析板式定制家具车间调度问题,其复杂性涉及产品生产工艺、车间生产模式以及车间动态扰动;阐述板式定制家具车间基于智能算法的调度方法研究现状,包括经典精确算法、启发式与元启发式算法和机器学习。基于智能算法的板式定制家具调度方法面临的瓶颈,提出一种“预测-反应”机制的分层协同调度框架。该框架将静态预调度优化与动态实时调度有机结合,提升车间对于动态事件的响应能力,为板式定制家具企业智能化转型提供理论支撑与实践路径。
With the growing personalized demand in the consumer market
the customized panel furniture industry is accelerating its transformation to small-batch and multi-variety flexible manufacturing. As the core decision-making link
workshop scheduling faces the challenges from strong process coupling
multi-objective conflicts
and frequent dynamic disturbances. Therefore
how to respond quickly and schedule reasonably to frequent dynamic events in the workshop is one of the keys to improving production efficiency. The issues in workshop scheduling of customized panel furniture are complex
which involves product production process
workshop production mode
and dynamic disturbance. The research status on scheduling methods based on efficient scheduling in customized panel furniture workshop is analyzed
including classical exact algorithm
heuristic and meta-heuristic algorithm
and machine learning. To address the challenges of scheduling method for customized panel furniture workshop based on efficient scheduling
a hierarchical collaborative scheduling framework of “prediction-response” mechanism is proposed. The framework combines static pre-scheduling optimization with dynamic real-time scheduling so that to improve the response ability of the workshop to dynamic events and provide theoretical support and practical path for the intelligent transformation of the customization panel furniture industry.
熊先青 , 符思捷 , 岳心怡 , 等 . 定制家具数字孪生车间构建模式及关键技术 [J ] . 木材科学与技术 , 2024 , 38 ( 6 ): 69 - 78 .
XIONG X Q , FU S J , YUE X Y , et al . Construction and technology of digital twin model in customized-furniture intelligent manufacturing workshop [J ] . Chinese Journal of Wood Science and Technology , 2024 , 38 ( 6 ): 69 - 78 .
牛壮壮 , 符思捷 . 人工智能技术在家具供应链中的应用 [J ] . 世界林业研究 , 2025 , 38 ( 1 ): 85 - 91 .
NIU Z Z , FU S J . Application of artificial intelligence technology in furniture supply chain [J ] . World Forestry Research , 2025 , 38 ( 1 ): 85 - 91 .
国家林业和草原局 . 我国林草产业年值10.17万亿元 [EB/OL ] . ( 2025-02-11 ). https://mp.weixin.qq.com/s/BmXmMt2rhCcQuujjHW-Mew https://mp.weixin.qq.com/s/BmXmMt2rhCcQuujjHW-Mew .
XIONG H G , SHI S Y , REN D N , et al . A survey of job shop scheduling problem: the types and models [J ] . Computers & Operations Research , 2022 , 142 : 105731 .
李颖俐 , 李新宇 , 高亮 . 混合流水车间调度问题研究综述 [J ] . 中国机械工程 , 2020 , 31 ( 23 ): 2798 - 2813, 2828 .
LI Y L , LI X Y , GAO L . Review on hybrid flow shop scheduling problems [J ] . China Mechanical Engineering , 2020 , 31 ( 23 ): 2798 - 2813, 2828 .
ZHANG H M , ZHU J G . Advancing wooden furniture manufacturing through intelligent manufacturing: the past, recent research activities and future perspectives [J ] . Wood Material Science & Engineering , 2024 : 1 - 22 .
黄家文 , 周昭龙 , 陶涛 , 等 . 基于机器故障下板式定制家具混合流水车间动态调度研究 [J ] . 林产工业 , 2023 , 60 ( 11 ): 66 - 71, 77 .
HUANG J W , ZHOU Z L , TAO T , et al . Research on dynamic scheduling of hybrid flow shop for panel custom furniture based on machine fault [J ] . China Forest Products Industry , 2023 , 60 ( 11 ): 66 - 71, 77 .
熊先青 , 岳心怡 , 张美 , 等 . 面向林木家居产品高质量发展的智能制造赋能技术体系构建 [J ] . 林业科学 , 2024 , 60 ( 11 ): 177 - 189 .
XIONG X Q , YUE X Y , ZHANG M , et al . Intelligent manufacturing enabling technologies system construction for high-quality development of furniture [J ] . Scientia Silvae Sinicae , 2024 , 60 ( 11 ): 177 - 189 .
WANG J X , WU Z W , YANG L Z , et al . Investigation on distributed rescheduling with cutting tool maintenance based on NSGA-III in large-scale panel furniture intelligent manufacturing [J ] . Journal of Manufacturing Processes , 2024 , 112 : 214 - 224 .
WU Z W , ZONG F , ZHANG F , et al . Investigation of the customized furniture industry’s production management systems [J ] . Journal of Engineering Research , 2023 , 11 ( 3 ): 164 - 175 .
耿睿 , 林秋丽 , 刘俊 , 等 . 定制家具质检流水线运输行为建模与分析 [J ] . 林业工程学报 , 2024 , 9 ( 4 ): 185 - 192 .
GENG R , LIN Q L , LIU J , et al . Modeling and analysis of transport behavior of custom furniture QC assembly line [J ] . Journal of Forestry Engineering , 2024 , 9 ( 4 ): 185 - 192 .
王金鑫 , 伍占文 , 胡伟 , 等 . 带有缓冲约束的板式家具混合流水车间调度求解方法 [J ] . 林业工程学报 , 2023 , 8 ( 3 ): 198 - 204 .
WANG J X , WU Z W , HU W , et al . Hybrid flow shop scheduling in panel furniture with buffer constraint [J ] . Journal of Forestry Engineering , 2023 , 8 ( 3 ): 198 - 204 .
李新宇 , 黄江平 , 李嘉航 , 等 . 智能车间动态调度的研究与发展趋势分析 [J ] . 中国科学: 技术科学 , 2023 , 53 ( 7 ): 1016 - 1030 .
LI X Y , HUANG J P , LI J H , et al . Research and development trend of intelligent shop dynamic scheduling [J ] . Scientia Sinica (Technologica) , 2023 , 53 ( 7 ): 1016 - 1030 .
DAUZÈRE-PÉRÈS S , DING J W , SHEN L J , et al . The flexible job shop scheduling problem: a review [J ] . European Journal of Operational Research , 2024 , 314 ( 2 ): 409 - 432 .
CALDEIRA R H , GNANAVELBABU A . A Pareto based discrete Jaya algorithm for multi-objective flexible job shop scheduling problem [J ] . Expert Systems with Applications , 2021 , 170 : 114567 .
王无双 , 骆淑云 . 基于强化学习的智能车间调度策略研究综述 [J ] . 计算机应用研究 , 2022 , 39 ( 6 ): 1608 - 1614 .
WANG W S , LUO S Y . Research on intelligent shop scheduling strategies based on reinforcement learning [J ] . Application Research of Computers , 2022 , 39 ( 6 ): 1608 - 1614 .
JAMILI A . Robust job shop scheduling problem: mathematical models, exact and heuristic algorithms [J ] . Expert Systems with Applications , 2016 , 55 : 341 - 350 .
WANG S J , LIU M , CHU C B . A branch-and-bound algorithm for two-stage no-wait hybrid flow-shop scheduling [J ] . International Journal of Production Research , 2015 , 53 ( 4 ): 1143 - 1167 .
杨昌仁 . 多阶段流水作业调度动态规划算法设计与分析 [J ] . 电脑编程技巧与维护 , 2023 ( 11 ): 20 - 22, 39 .
YANG C R . Design and analysis of dynamic programming algorithm for multi-stage flow shop scheduling [J ] . Computer Programming Skills & Maintenance , 2023 ( 11 ): 20 - 22, 39 .
SUN L L , YANG R M , FENG J , et al . Applications of Lagrangian relaxation-based algorithms to industrial scheduling problems, especially in production workshop scenarios: a review [J ] . Journal of Process Control , 2024 , 139 : 103233 .
TÜRKYILMAZ A , ŞENVAR Ö , ÜNAL İ , et al . A research survey: heuristic approaches for solving multi objective flexible job shop problems [J ] . Journal of Intelligent Manufacturing , 2020 , 31 ( 8 ): 1949 - 1983 .
STANKOVIĆ A , PETROVIĆ G , ĆOJBAŠIĆ Ž , et al . An application of metaheuristic optimization algorithms for solving the flexible job-shop scheduling problem [J ] . Operational Research in Engineering Sciences: Theory and Applications , 2020 , 3 ( 3 ): 13 - 28 .
WANG Y H , HAN Y Y , WANG Y T , et al . An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time [J ] . Expert Systems with Applications , 2023 , 233 : 120909 .
AQUINALDO S L , CUCUK N R . Optimization in job shop scheduling problem using genetic algorithm (study case in furniture industry) [C ] // IOP Conference Series: Materials Science and Engineering . IOP Publishing , 2021 , 1072 ( 1 ): 012019 . DOI 10.1088/1757-899X/1072/1/012019.
TARIGAN U , SIREGAR I , SIREGAR K , et al . Production scheduling using ant colony optimization in furniture industry [J ] . IOP Conference Series: Materials Science and Engineering , 2021 , 1122 ( 1 ): 012056 .
YUE X Y , XIONG X Q , ZHANG M , et al . Multi-objective optimization for energy-efficient hybrid flow shop scheduling problem in panel furniture intelligent manufacturing with transportation constraints [J ] . Expert Systems with Applications , 2025 , 274 : 126830 .
KAYHAN B M , YILDIZ G . Reinforcement learning applications to machine scheduling problems: a comprehensive literature review [J ] . Journal of Intelligent Manufacturing , 2023 , 34 ( 3 ): 905 - 929 .
李开心 , 尹瑞雪 , 周鹏 . 面向能耗的柔性作业车间调度研究方法综述 [J ] . 制造业自动化 , 2024 , 46 ( 9 ): 150 - 158 .
LI K X , YIN R X , ZHOU P . Review of research methods for flexible job-shop scheduling based on energy consumption [J ] . Manufacturing Automation , 2024 , 46 ( 9 ): 150 - 158 .
MASOUMI A , BOND B H . Machine learning-based prediction of processing time in furniture manufacturing to estimate lead time and pricing [J ] . European Journal of Wood and Wood Products , 2025 , 83 ( 1 ): 35 .
SCHNEEVOGT M , BINNINGER K , KLARMANN N . Optimizing job shop scheduling in the furniture industry: a reinforcement learning approach considering machine setup, batch variability, and intralogistics [J ] . arXiv preprint arXiv:2409. 11820 , 2024 . https://doi.org/10.48550/arXiv.2409.11820 https://doi.org/10.48550/arXiv.2409.11820 .
相关作者
相关机构

京公网安备11010802024621