WANG Pinbo,WANG Yuchen,WANG Shuangyong,et al.Study on Tree Ring Instance Segmentation and Information Detection Based on Improved YOLOv8[J].Chinese Journal of Wood Science and Technology,2025,39(03):7-18. DOI: 10.12326/j.2096-9694.2025008.
Study on Tree Ring Instance Segmentation and Information Detection Based on Improved YOLOv8
在气候学、生态学、考古学等诸多领域,树木年轮蕴含的环境变迁与历史演替信息具有不可替代的研究价值。为解决传统年轮检测方法存在效率低、易受人为因素干扰等问题,研究提出DCW-YOLOv8年轮实例分割模型,运用可扩张残差(Dilation-wise Residual,DWR)注意力模块、轻量级通用上采样算子(Content-Aware ReAssembly of Features,CARAFE)、动态非单调聚焦机制边界框损失函数(Weighted Interpolation of Sequential Evidence for Intersection over Union,Wise-IoU)组合改进,并设计一种依据模型掩码获取年轮数量与宽度信息的检测方法。消融试验和前沿模型对比试验结果表明,DCW-YOLOv8模型掩码平均精度mAP@0.50、mAP@0.50∶0.95提升,达到86.4%、53.6%,优于同类算法;注意力可视化比较结果表明,DCW-YOLOv8对年轮特征注意力更强;年轮信息检测结果表明,年轮数量检测准确率达到86.2%,年轮宽度检测误差在±0.5 mm范围内的占70%,总体平均误差为0.295 mm。研究提出的DCW-YOLOv8模型为年轮自动化检测提供新的思路和方法。
Abstract
In climatology
ecology
and archaeology
tree rings hold irreplaceable value for studying environmental change and historical succession. To improve the efficiency and reduce human interference in traditional tree-ring detection
this study proposes DCW-YOLOv8
an instance segmentation model enhanced with dilation-wise residual (DWR) attention module
lightweight CARAFE upsampling
and dynamic Wise-IoU loss. A detection method using model-generated masks is designed to quantify ring counts and widths. The ablation and comparative experiments show DCW-YOLOv8 achieves superior mask mAP (86.4% for mAP@0.50
53.6% for mAP@0.50∶0.95) versus state-of-the-art models. Attention visualization confirms stronger focus on tree-ring features. Detection results include 86.2% count-accuracy
70% width measurements within ±0.5 mm error
and a mean width error of 0.295 mm. This model provides a novel automated approach for tree-ring analysis.
ZHU X L , CHEN Q M , LYU A F , et al . Impacts of human activity on Bayin River runoff as revealed by tree rings in Qaidam Basin, China [J ] . Chinese Journal of Applied Ecology , 2021 , 32 ( 10 ): 3653 - 3660 .
WEI X X , PENG J F , PENG M , et al . Response of Pinus tabuliformis radial growth to climate factors in the north-south transition zone of China: case study in the Jigong Mountain [J ] . Scientia Geographica Sinica , 2024 , 44 ( 9 ): 1643 - 1652 .
MARCELO-PEÑA J L , ROIG F A , GOODWIN Z A , et al . Characterizing growth rings in the trees of perú: a wood anatomical overview for potential applications in dendroecological-related fields [J ] . Dendrochronologia , 2020 , 62 : 125728 .
RYBNÍČEK M , KOČÁR P , MUIGG B , et al . World’s oldest dendrochronologically dated archaeological wood construction [J ] . Journal of Archaeological Science , 2020 , 115 : 105082 .
ESPER J , COOK E R , SCHWEINGRUBER F H . Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability [J ] . Science , 2002 , 295 ( 5563 ): 2250 - 2253 .
XU W J , MA C , LYU L Q , et al . Dendrochronological interpretation of glacial debris flow history in the Rema Gully, Xizang, China [J ] . Mountain Research , 2025 , 43 ( 1 ): 122 - 131 .
MANNING S W , LORENTZEN B , BAKIRTZIS N , et al . Progress towards a Byzantine-medieval historic buildings tree-ring chronology from Cyprus using dendrochronology and radiocarbon [J ] . Radiocarbon , 2024 , 66 ( 6 ): 1643 - 1661 .
HUANG L , WANG Y C , HAN X , et al . Material application method and component damage analysis of the Pu-Pai Fang in Yingxian wooden pagoda [J ] . Chinese Journal of Wood Science and Technology , 2024 , 38 ( 4 ): 8 - 19 .
PENG Z T , GUO M M , ZHANG Y D , et al . Effects of abrupt warming on Picea likiangensis var. balfouriana and Abies squamata growth at tree line in Dafu, Sichuan, China [J ] . Acta Ecologica Sinica , 2021 , 41 ( 20 ): 8202 - 8211 .
HU X Y , ZHENG Y L , XING D , et al . Research on tree ring micro-destructive detection technology based on digital micro-drilling resistance method [J ] . Forests , 2022 , 13 ( 7 ): 1139 .
PAN H , LU J , LEI X D , et al . Tree age estimation based on resistograph stationary Kalman filter [J ] . Scientia Silvae Sinicae , 2021 , 57 ( 6 ): 14 - 23 .
YAO J F , ZHAO Y D , FU L Y , et al . Tree-rings measurement method based on micro drill resistance [J ] . Transactions of the Chinese Society for Agricultural Machinery , 2022 , 53 ( 4 ): 52 - 59 .
VAN DEN BULCKE J , BOONE M A , DHAENE J , et al . Advanced X-ray CT scanning can boost tree ring research for earth system sciences [J ] . Annals of Botany , 2019 , 124 ( 5 ): 837 - 847 .
LIU Z Y , HAN Z L , CHENG Y X , et al . Measurement and verification of tree-ring growth parameters of Tamarix ramosissima based on computed tomography scanning [J ] . Acta Ecologica Sinica , 2024 , 44 ( 20 ): 9401 - 9411 .
LIN Q Z , HE T , SUN Y K , et al . A computer-aided method for identifying the presence of softwood growth ring boundaries [J ] . PLoS One , 2020 , 15 ( 9 ): e0235727 .
YAO J F , GUO X Z , SONG X Y , et al . Research on peak-valley tree-ring recognition method based on gray image [J ] . Journal of Xinyang Normal University (Natural Science Edition) , 2022 , 35 ( 3 ): 475 - 480 .
YU X Z , ZHONG L H , ZHOU H , et al . Tree-ring based forest model calibrations with a deep learning algorithm [J ] . Forest Ecology and Management , 2024 , 569 : 122154 .
ABDELJABER O , HABITE T , OLSSON A . Automatic estimation of annual ring profiles in Norway spruce timber boards using optical scanning and deep learning [J ] . Computers & Structures , 2023 , 275 : 106912 .
KIM D , KO C , KIM D . Method for detecting tree ring boundary in conifers and broadleaf trees using Mask R-CNN and linear interpolation [J ] . Dendrochronologia , 2023 , 79 : 126088 .
LI W , SOLIHIN M I , NUGROHO H A . RCA: YOLOv8-based surface defects detection on the inner wall of cylindrical high-precision parts [J ] . Arabian Journal for Science and Engineering , 2024 , 49 ( 9 ): 12771 - 12789 .
LIU J J , LI L L , ZHANG H Y , et al . Construction waste classification and detection algorithm based on improved YOLOv7 [J ] . Chinese Journal of Environmental Engineering , 2024 , 18 ( 1 ): 270 - 279 .
DUAN Z Q , XIE T , WANG L C , et al . Microalgae detection based on improved YOLOv5 [J ] . IET Image Processing , 2024 , 18 ( 10 ): 2602 - 2613 .